GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
  • 1
    Online Resource
    Online Resource
    Singapore :Springer,
    Keywords: Environmental chemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (340 pages)
    Edition: 1st ed.
    ISBN: 9789811553547
    DDC: 577.14
    Language: English
    Note: Intro -- Preface -- Contents -- About the Editors -- Part I: Measurement of Environmental Parameters Affecting Marine Plankton Physiology -- Chapter 1: Characteristics of Marine Chemical Environment and the Measurements and Analyses of Seawater Carbonate Chemistry -- 1.1 Dissolved Inorganic Carbon -- 1.2 Total Alkalinity -- 1.3 pH -- 1.4 Seawater Partial Pressure of CO2 -- 1.5 Carbonate Mineral Saturation State -- 1.6 Determination of Seawater Carbonate System Parameters -- Chapter 2: Photosynthetically Active Radiation and Ultraviolet Radiation Measurements -- 2.1 Introduction -- 2.1.1 Light Intensity Measurement -- 2.1.2 Light Absorption and Extinction Coefficient -- 2.1.3 Planer and Spherical Radiometer Calibration -- References -- Part II: Plankton Culture Techniques -- Chapter 3: Manipulation of Seawater Carbonate Chemistry -- 3.1 Changes in the Carbonate Chemistry in Algal Cultures -- 3.2 Perturbation and Controlling of Seawater Carbonate Chemistry Parameters -- 3.2.1 Altering Concentration of Dissolved Inorganic Carbon -- 3.2.1.1 Controlling CO2 Partial Pressures -- 3.2.1.2 Adding CO2 Saturated Sea Water -- 3.2.1.3 Adding Strong Acid and CO32- or/and HCO3- -- 3.2.2 Changing Total Alkalinity -- 3.2.2.1 Adding Strong Acid and Alkali -- 3.2.2.2 Adding CO32- or/and HCO3- -- 3.2.2.3 Controlling Concentration of Ca2+ -- 3.3 Control of Microalgal Cell Density or Biomass -- 3.4 Analyses of Advantages and Disadvantages -- 3.5 Recommendations and Suggestions -- 3.5.1 Filtration and Sterilization -- 3.5.2 Maintain Carbonate Chemistry -- 3.5.3 Effects of Dissolved Organic Matters, Inorganic Nutrients, and Buffers on TA -- 3.5.4 The Treatment of Isotope Inorganic Carbon -- 3.5.5 Determination of Carbonate System Parameters -- 3.5.6 Measurement of pH -- References -- Chapter 4: Microalgae Continuous and Semi-continuous Cultures -- 4.1 Introduction. , 4.2 Microalgal Continuous Culture -- 4.2.1 Turbidostat -- 4.2.2 Chemostat -- 4.3 Microalgal Semicontinuous Culture -- 4.4 The Specific Growth Rates Calculation -- 4.4.1 Batch Culture -- 4.4.2 Semicontinuous Culture -- 4.4.3 Continuous Culture -- 4.5 Relative Merits and Optimization Recommendations -- 4.5.1 Relative Merits of Continuous Culture -- 4.5.2 The Advantages and Disadvantages of Microalgae Semicontinuous Cultures -- 4.5.3 Details in Culture Optimizing -- References -- Chapter 5: Culturing Techniques for Planktonic Copepods -- 5.1 Introduction -- 5.2 Copepod Culturing Methods -- 5.3 Procedures for Copepod Culture -- 5.3.1 Provenance Copepod Collection -- 5.3.2 Copepod Isolation, Purification and Culture -- 5.3.3 Feeding Food -- 5.3.4 Water Quality Control of Culture Medium -- 5.3.5 Harvesting -- 5.4 The Advantages and Disadvantages of Different Culture Methods and Points for Attention -- References -- Part III: Determination of Key Enzymes in Primary Producers -- Chapter 6: Carbonic Anhydrase -- 6.1 Introduction -- 6.2 Immunochemical Quantitative Analysis of Carbonic Anhydrase -- 6.2.1 Preparation of a Protein Sample of Carbonic Anhydrase -- 6.2.2 Separation of Proteins by Electrophoresis (Bailly and Coleman 1988 -- Zhao 2008) -- 6.2.2.1 Sample Treatment -- 6.2.2.2 Loading Sample and Electrophoresis -- 6.2.3 Transfer Proteins to Membrane -- 6.2.4 Blocking -- 6.2.5 Primary Antibody Incubation -- 6.2.6 Secondary Antibody Incubation -- 6.2.7 Protein Detection -- 6.3 Determination of Activity of Carbonic Anhydrase (Willbur and Anderson 1948 -- Xia and Huang 2010) -- 6.3.1 Measurement of Extracellular CA -- 6.3.2 Measurement of Intracellular CA -- 6.3.3 Advantage and Disadvantage -- References -- Chapter 7: Rubisco -- 7.1 Introduction -- 7.2 Experimental Materials and Methods -- 7.2.1 Protein Extraction. , 7.2.1.1 Extraction of Denatured Total Protein -- Materials, Reagents, Instruments and Experimental Methods -- 7.2.1.2 Extraction of Soluble Native Protein -- Materials, Reagents, Instruments, and Experimental Methods -- 7.2.2 Quantification of Rubisco -- 7.2.2.1 Rubisco Quantification Using Immunochemical Methods -- Materials, Reagents, Instruments, and Experimental Methods -- 7.2.2.2 Quantitative Rubisco Using 14C-CABP (2-Carboxy-d-arabinitol-1,5-bisphosphate) -- Materials, Reagents, Instruments, and Experimental Methods -- 7.2.3 Detection of Rubisco Activity -- 7.2.3.1 Detection of Rubisco Enzyme Activity Using NaH14CO3 -- Materials, Reagents, Instruments, and Experimental Methods -- 7.2.3.2 Enzyme-Linked Method of Detection of Rubisco Enzyme Activity -- Materials, Reagents, Instruments, and Experimental Methods -- 7.3 Advantages, Disadvantages, and Misunderstanding -- References -- Chapter 8: Phosphoenolpyruvate Carboxylase -- 8.1 PEPC and C4 Pathway -- 8.2 Preparation and Assay of PEPC -- 8.2.1 Preparation of Reagents -- 8.2.2 Preparation of Cell Extract -- 8.2.3 Procedure -- 8.2.4 14C Isotope Assay Methods -- 8.3 Note -- References -- Chapter 9: Nitrate Reductase -- 9.1 Introduction -- 9.2 Materials and Method -- 9.2.1 Materials -- 9.2.2 Reagent Preparation -- 9.2.3 Methods -- 9.3 Discussion -- References -- Chapter 10: Antioxidants and Reactive Oxygen Species (ROS) Scavenging Enzymes -- 10.1 Introduction -- 10.2 Superoxide Dismutase (SOD) Activity -- 10.2.1 Materials -- 10.2.2 Reagent Preparation -- 10.2.3 Methods -- 10.3 Catalase (CAT) Activity -- 10.3.1 Materials -- 10.3.2 Reagent Preparation -- 10.3.3 Methods -- 10.4 Peroxidase (POD) Activity -- 10.4.1 Materials -- 10.4.2 Reagent Preparation -- 10.4.3 Methods -- 10.5 Ascorbate Peroxidase (APX) Activity -- 10.5.1 Materials -- 10.5.2 Reagent Preparation -- 10.5.3 Methods. , 10.6 Glutathione Reductase (GR) Activity -- 10.6.1 Methods -- 10.7 Discussion -- References -- Part IV: Measurements and Analyses of Pigments -- Chapter 11: Chlorophylls -- 11.1 Distribution, Structure, and Spectral Characteristics of Chlorophylls -- 11.2 Quantitative Analysis of Chlorophyll -- 11.2.1 Spectrophotometry -- 11.2.2 High Performance Liquid Chromatography (HPLC) -- 11.3 The Advantages and Disadvantages of These Methods -- References -- Chapter 12: Phycobiliproteins -- 12.1 Quantitative Analysis of Phycobiliprotein -- 12.2 Isolation and Purification of Phycobiliprotein -- 12.3 Advantages and Disadvantages of Extraction Methods -- References -- Chapter 13: Carotenoids -- 13.1 Distribution of Carotenoids in the Algal Class -- 13.2 Carotenoid Analysis by HPLC -- 13.3 Quantification of Total Carotenoids -- 13.4 Note -- References -- Chapter 14: Phenolic Compounds and Other UV-Absorbing Compounds -- 14.1 Introduction -- 14.2 Determination of Phenolic Compounds -- 14.2.1 Spectrophotometer -- 14.2.2 HPLC -- 14.2.2.1 Preparation of Microalgae Extracts for Isolation and Quantification of Phenolic Compounds -- 14.2.2.2 Solid-Phase Extraction -- 14.2.2.3 Quantification of the Phenolic Compounds -- 14.2.3 Strengths and Limitations -- 14.3 Determination of UV-Absorbing Compounds -- 14.3.1 Extraction of Samples for HPLC Analysis of Mycosporine Amino Acids -- 14.3.2 HPLC Analysis -- References -- Part V: Measurements and Analyses of Photosynthesis and Respiration -- Chapter 15: Photosynthetic Oxygen Evolution -- 15.1 Instruments and Equipment -- 15.2 Solution Preparation -- 15.3 Operation Procedures -- 15.3.1 Installation of the Liquid Oxygen Electrode -- 15.3.2 Calibration of the Liquid Oxygen Electrode -- 15.3.3 Determination of Dissolved Oxygen -- 15.3.4 Calculation of Oxygen Evolution/Oxygen Consumption Rate of Samples. , 15.4 The Advantages, Disadvantages, and Considerations -- References -- Chapter 16: Photosynthetic Carbon Fixation -- 16.1 Introduction -- 16.2 14C Isotope Tracer Method -- 16.2.1 Sampling Protocols -- 16.2.2 14C Inoculation and Incubation -- 16.2.3 14C Collection, Treatment, and Measurement -- 16.3 Matters Needing Attention -- 16.3.1 Volume of Incubation Flask -- 16.3.2 Amount of 14C Addition -- 16.3.3 Incubation Time -- 16.4 Advantages and Disadvantages of the 14C Method -- 16.5 Application of the 14C Method in the Laboratory -- References -- Chapter 17: Photorespiration and Dark Respiration -- 17.1 Introduction -- 17.2 Materials and Methods -- 17.2.1 Algal Materials -- 17.2.2 Instruments -- 17.2.3 Method -- References -- Chapter 18: Carbon Dioxide vs. Bicarbonate Utilisation -- 18.1 Introduction -- 18.2 Methodology -- 18.2.1 Isotope Disequilibria -- 18.2.2 pH Dependence of K0.5 Values -- 18.2.3 Photosynthetic Rates at Different pH Values -- 18.2.3.1 Kinetics of O2 Evolution vs. Uncatalyzed CO2 Supply from HCO3- -- 18.2.3.2 MIMS -- 18.3 Merits and Demerits -- References -- Chapter 19: Action Spectra of Photosynthetic Carbon Fixation -- 19.1 Introduction -- 19.2 Action Spectrum of Visible Light -- 19.2.1 Absorption Spectrum of Pigment -- 19.2.2 Production of Action Spectrum -- 19.3 Biological Weighting Function of UV Radiation -- 19.3.1 Sample Collection -- 19.3.2 Solar Radiation Monitoring -- 19.3.3 Ultraviolet Radiation Treatment -- 19.3.4 Determination of Photosynthetic Carbon Fixation Rate -- 19.3.5 Calculation of BWF -- 19.3.5.1 Photosynthetic Carbon Fixation of Phytoplankton -- 19.3.5.2 UV Intensity Between Filters -- 19.3.5.3 Calculation of Biological Weight -- 19.4 Advantages and Disadvantages -- References -- Chapter 20: Determination of the Inorganic Carbon Affinity and CO2 Concentrating Mechanisms of Algae -- 20.1 Introduction. , 20.2 Determination of Inorganic Carbon Affinity.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Aquatic ecology-Climatic factors. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (325 pages)
    Edition: 1st ed.
    ISBN: 9780429790058
    DDC: 577.6
    Language: English
    Note: Cover -- Title -- Copyright -- Preface -- Contents -- Chapter 1. Introduction Donat-P. Häder and Kunshan Gao -- Chapter 2. Solar UV Radiation and Penetration into Water Uwe Feister and Donat-P. Häder -- Chapter 3. Ocean Climate Changes Donat-P. Häder and Kunshan Gao -- Chapter 4. Effects of Global Climate Change on Cyanobacteria Jainendra Pathak, Haseen Ahmed, Rajneesh, Shailendra P. Singh, Donat-P. Häder and Rajeshwar P. Sinha -- Chapter 5. Phytoplankton Responses to Ocean Climate Change Drivers Interaction of Ocean Warming, Ocean Acidification and UV Exposure Donat-P. Häder and Kunshan Gao -- Chapter 6. Are Warmer Waters, Brighter Waters?: An Examination of the Irradiance Environment of Lakes and Oceans in a Changing Climate Patrick Neale and Robyn Smyth -- Chapter 7. Effects of Global Change on Aquatic Lower Trophic Levels of Coastal South West Atlantic Ocean Environments Macarena S. Valiñas, Virginia E. Villafañe and E. Walter Helbling -- Chapter 8. Effects of Climate Change on Corals Donat-P. Häder -- Chapter 9. Responses of Calcifying Algae to Ocean Acidification Kai Xu and Kunshan Gao -- Chapter 10. Effects of a Changing Climate on Freshwater and Marine Zooplankton Craig E. Williamson and Erin P. Overholt -- Chapter 11. UV-B Radiation and the Green Tide-forming Macroalga Ulva Jihae Park, Murray T. Brown, Hojun Lee, Christophe Vieira, Lalit K. Pandey, Eunmi Choi, Stephen Depuydt, Donat-P. Häder and Taejun Han -- Chapter 12. Mid-Latitude Macroalgae Donat-P. Häder -- Chapter 13. Polar Macroalgae Donat-P. Häder -- Chapter 14. Effects of Climate Change on Aquatic Bryophytes Javier Martínez-Abaigar and Encarnación Núñez-Olivera -- Chapter 15. Ecophysiological Responses of Mollusks to Oceanic Acidification Ting Wang and Youji Wang -- Chapter 16. Climate Change Effects on the Physiology and Ecology of Fish Wang Xiaojie -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 398-399 (1999), S. 355-359 
    ISSN: 1573-5117
    Keywords: CO2 ; emersion ; macroalgae ; photosynthesis ; seaweeds
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In order to assess the ecological impacts of the atmospheric CO2 increase on the intertidal macroalgae during emersion, the photosynthesis of Enteromorpha linza (a green alga), Ishige okamurae (a brown alga) and Gloiopeltis furcata (a red alga) was investigated in air as a function of CO2 concentrations and water loss. Their photosynthesis was not saturated at the present atmospheric CO2 level (350 μl l −1 or 15.6 μM), the CO2 compensation point and $$K_{[{\text{mCO}}_{\text{2}} ]} $$ increased with increasing desiccation, showing that desiccation lowers the CO2 affinity of the intertidal macroalgae. It was concluded that E. linza, I. okamurae and G. furcata, while exposed to air, can benefit from atmospheric CO2 rise, especially when the algae have lost some water.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5176
    Keywords: CO2 ; growth ; pH ; photosynthesis ; Porphyra yezoensis ; red alga
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Leafy thalli of the red algaPorphyra yezoensis Ueda, initiated from conchospores released from free-living conchocelis, were cultured using aeration with high CO2. It was found that the higher the CO2 concentration, the faster the growth of the thalli. Aeration with elevated CO2 lowered pH in dark, but raised pH remarkably in light with the thalli, because the photosynthetic conversion of HCO 3 − to OH− and CO2 proceeded much faster than the dissociation of hydrated CO2 releasing H+. Photosynthesis of the alga was found to be enhanced in the seawater of elevated dissolved inorganic carbon (DIC, CO2 + HCO 3 − + CO 3 − ). It is concluded that the increased pH in the light resulted in the increase of DIC in the culture media, thus enhancing photosynthesis and growth. The relevance of the results to removal of atmospheric CO2 by marine algae is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-5176
    Keywords: CO2 ; growth ; pH ; photosynthesis ; Porphyra yezoensis ; red alga
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Leafy thalli of the red algaPorphyra yezoensis Ueda, initiated from conchospores released from free-living conchocelis, were cultured using aeration with high CO2. It was found that the higher the CO2 concentration, the faster the growth of the thalli. Aeration with elevated CO2 lowered pH in dark, but raised pH remarkably in light with the thalli, because the photosynthetic conversion of HCO 3 − to OH− and CO2 proceeded much faster than the dissociation of hydrated CO2 releasing H+. Photosynthesis of the alga was found to be enhanced in the seawater of elevated dissolved inorganic carbon (DIC, CO2 + HCO 3 − + CO 3 − ). It is concluded that the increased pH in the light resulted in the increase of DIC in the culture media, thus enhancing photosynthesis and growth. The relevance of the results to removal of atmospheric CO2 by marine algae is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Journal of applied phycology 10 (1998), S. 37-49 
    ISSN: 1573-5176
    Keywords: Blue-green alga ; cyanobacterium ; Nostocflagelliforme ; chemical composition ; culture ; ecophysiology ; morphology ; food ; resources ; utilization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Nostoc flagelliforme, which is distributed in arid or semiarid steppes of the west and west-northern parts of China, has been used by the Chinese as a food delicacy and for its herbal values for hundreds of years. However, the resource is being over-exploited and is diminishing, while the market demands are increasing with the economic growth. This review deals mainly with the Chinese studies on the ecology, physiology, reproduction, morphology and culture of this species in an attempt to promote research and development of its cultivation technology.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Journal of applied phycology 10 (1998), S. 55-58 
    ISSN: 1573-5176
    Keywords: blue-green alga ; cyanobacterium ; Fv/Fm ; Nostoc flagelliforme ; wind
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effects of wind speed on loss of water from N. flagelliforme colonies were investigated indoors in an attempt to assess its ecological significance in field. Wind enhanced the process of waterloss; the half-time of desiccation at wind speeds of 2.0 and 3.4 m s-1 was, respectively, shortened to one-third and one-fifth at 20°C and, to one-sixth and one-eighth at 27°C that of still air. Photosynthetic efficiency was not affected before the wet alga lost about 50% water.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Journal of applied phycology 12 (2000), S. 185-189 
    ISSN: 1573-5176
    Keywords: blue-green alga ; cyanobacterium ; carbon dioxide ; culture ; growth ; Nostocflagelliforme ; rehydration, watering
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The terrestrial blue-green alga (cyanobacterium), Nostoc flagelliforme, was cultured in air at variouslevels of CO2, light and watering to see theireffects on its growth. The alga showed the highestrelative growth rate at the conditions of highCO2 (1500 ppm), high light regime (219–414μmol m-2s-1) and twice daily watering,but the lowest rate at the conditions of low light(58–114 μmol m-2s-1) and daily twicewatering. Increased watering had little effect ongrowth rate at 350 ppm CO2, but increased byabout 70% at 1500ppm CO2 under high lightconditions. It was concluded that enriched CO2could enhance the growth of N. flagelliformewhen sufficient light and water was supplied.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Journal of applied phycology 11 (1999), S. 535-541 
    ISSN: 1573-5176
    Keywords: cyanobacterium ; Nostoc flagelliforme ; nutrients ; photosynthesis ; potassium ; re-hydration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effects of nutrients on the photosynthetic recovery of Nostoc flagelliforme during re-hydration were investigated in order to see if their addition was necessary. Net photosynthesis was negligible in distilled water without nutrient-enrichment. Addition of K+ resulted in significant enhancement of net photosynthesis, whereas other nutrients (Fe3+, Mg2+, Na+, NO3 -, PO4 3-, Cl-) and trace-metals (A5) showed little effect. The recovered net photosynthetic activity increased with the increased K+, and reached the maximum at concentrations above 230 μM. Desiccation and re-hydration did not affect the dependence of photosynthetic recovery on K+. It was concluded that dried field populations of N. flagelliforme require exogenous addition of potassium for photosynthetic recovery and that growth may be potassium-limited in nature.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Journal of applied phycology 10 (1998), S. 51-53 
    ISSN: 1573-5176
    Keywords: blue-green alga ; cyanobacterium ; Fv/Fmlight ; Nostoc flagelliforme ; photosynthesis ; rewetting
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract PS II photochemical efficiency (Fv/Fm) of Nostoc flagelliforme was examined after rewetting in order to investigate the light-dependency of its photosynthetic recovery. Fv/Fm was not detected in the dark, but was immediately recognized in the light. Different levels of light irradiation (4, 40 and 400 µmol photon m2 s-1) displayed different effects on the recovery process of photosynthesis. The intermediate level led to the best recovery of photochemical efficiency; the low light required longer and the high light inhibited the extent of the recovered efficiency. It was concluded that the photosynthetic recovery of N. flagelliforme is both light-dependent and influenced by photon flux density.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...