GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Publisher
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Cigliano, M; Gambi, Maria Cristina; Rodolfo-Metalpa, Riccardo; Patti, F P; Hall-Spencer, Jason M (2010): Effects of ocean acidification on invertebrate settlement at volcanic CO2 vents. Marine Biology, 157(11), 2489-2502, https://doi.org/10.1007/s00227-010-1513-6
    Publication Date: 2023-03-14
    Description: We present the first study of the effects of ocean acidification on settlement of benthic invertebrates and microfauna. Artificial collectors were placed for 1 month along pH gradients at CO2 vents off Ischia (Tyrrhenian Sea, Italy). Seventy-nine taxa were identified from six main taxonomic groups (foraminiferans, nematodes, polychaetes, molluscs, crustaceans and chaetognaths). Calcareous foraminiferans, serpulid polychaetes, gastropods and bivalves showed highly significant reductions in recruitment to the collectors as pCO2 rose from normal (336-341 ppm, pH 8.09-8.15) to high levels (886-5,148 ppm) causing acidified conditions near the vents (pH 7.08-7.79). Only the syllid polychaete Syllis prolifera had higher abundances at the most acidified station, although a wide range of polychaetes and small crustaceans was able to settle and survive under these conditions. A few taxa (Amphiglena mediterranea, Leptochelia dubia, Caprella acanthifera) were particularly abundant at stations acidified by intermediate amounts of CO2 (pH 7.41-7.99). These results show that increased levels of CO2 can profoundly affect the settlement of a wide range of benthic organisms.
    Keywords: Alkalinity, Gran titration (Gran, 1950); Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Calcite saturation state; Calculated using SYSTAT; Carbon, inorganic, dissolved; Carbonate ion; Carbon dioxide; DEPTH, water; EPOCA; European Project on Ocean Acidification; Event label; Identification; Ischia/N1_080418; Ischia/N1_080508; Ischia/N1_080510; Ischia/N2_080418; Ischia/N2_080508; Ischia/N2_080510; Ischia/N3_080418; Ischia/N3_080508; Ischia/N3_080510; Ischia/S1_080417; Ischia/S1_080506; Ischia/S1_080508; Ischia/S1_080510; Ischia/S1_080518; Ischia/S2_080417; Ischia/S2_080506; Ischia/S2_080508; Ischia/S2_080510; Ischia/S2_080512; Ischia/S3_080417; Ischia/S3_080506; Ischia/S3_080508; Ischia/S3_080510; Ischia/S3_080518; Mediterranean Sea; OCE; Oceanography; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH meter (Metrohm, 826 pH mobile); Salinity; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 288 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-08-23
    Keywords: Ischia/S2_2015; Mediterranean Sea
    Type: Dataset
    Format: application/vnd.openxmlformats-officedocument.spreadsheetml.sheet, 16.1 kBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-08-23
    Keywords: DATE/TIME; DEPTH, water; Ischia/S2_2015; Mediterranean Sea; pH; Sample ID; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 1437 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Lucey, Noelle M; Lombardi, Chiara; Florio, Maurizio; DeMarchi, Lucia; Nannini, Matteo; Rundle, Simon; Gambi, Maria Cristina; Calosi, Piero (2016): An in situ assessment of local adaptation in a calcifying polychaete from a shallow CO2 vent system. Evolutionary Applications, 9(9), 1054-1071, https://doi.org/10.1111/eva.12400
    Publication Date: 2023-08-23
    Description: Ocean acidification (OA) is likely to exert selective pressure on natural populations. Our ability to predict which marine species will adapt to OA, and what underlies this adaptive potential, are of high conservation and resource management priority. Using a naturally low pH vent site in the Mediterranean Sea (Castello Aragonese, Ischia) mirroring projected future OA conditions, we carried out a reciprocal transplant experiment to investigate the relative importance of phenotypic plasticity and local adaptation in two populations of the sessile, calcifying polychaete /Simplaria /sp. (Annelida, Serpulidae, Spirorbinae): one residing in low pH and the other from a nearby ambient (i.e. high) pH site. We measured a suite of fitness related traits (i.e. survival, reproductive output, maturation, population growth) and tube growth rates in laboratory-bred F2 generation individuals from both populations reciprocally transplanted back into both ambient and low pH /in situ/ habitats. Both populations showed lower expression in all traits, but increased tube growth rates, when exposed to low pH compared to high pH conditions, regardless of their site of origin suggesting that local adaptation to low pH conditions has not occurred. We also found comparable levels of plasticity in the two populations investigated, suggesting no influence of long-term exposure to low pH on the ability of populations to adjust their phenotype. Despite high variation in trait values among sites and the relatively extreme conditions at sites close to the vents (pH 〈 7.36), response trends were consistent across traits. Hence, our data suggest that, for /Simplaria /and possibly other calcifiers, neither local adaptations nor sufficient phenotypic plasticity levels appear to suffice in order to compensate for the negative impacts of OA on long-term survival. Our work also underlines the utility of field experiments in natural environments subjected to high level of /p/CO_2 for elucidating the potential for adaptation to future scenarios of OA.
    Keywords: Ischia/S2_2015; Mediterranean Sea
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Kroeker, Kristy J; Micheli, Florenza; Gambi, Maria Cristina; Martz, Todd R (2011): Divergent ecosystem responses within a benthic marine community to ocean acidification. Proceedings of the National Academy of Sciences of the United States of America, 108(35), 14515-14520, https://doi.org/10.1073/pnas.1107789108
    Publication Date: 2024-03-15
    Description: Ocean acidification is predicted to impact all areas of the oceans and affect a diversity of marine organisms. However, the diversity of responses among species prevents clear predictions about the impact of acidification at the ecosystem level. Here, we used shallow water CO2 vents in the Mediterranean Sea as a model system to examine emergent ecosystem responses to ocean acidification in rocky reef communities. We assessed in situ benthic invertebrate communities in three distinct pH zones (ambient, low, and extreme low), which differed in both the mean and variability of seawater pH along a continuous gradient. We found fewer taxa, reduced taxonomic evenness, and lower biomass in the extreme low pH zones. However, the number of individuals did not differ among pH zones, suggesting that there is density compensation through population blooms of small acidification-tolerant taxa. Furthermore, the trophic structure of the invertebrate community shifted to fewer trophic groups and dominance by generalists in extreme low pH, suggesting that there may be a simplification of food webs with ocean acidification. Despite high variation in individual species' responses, our findings indicate that ocean acidification decreases the diversity, biomass, and trophic complexity of benthic marine communities. These results suggest that a loss of biodiversity and ecosystem function is expected under extreme acidification scenarios.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Amphipoda; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthos; Bicarbonate ion; Biomass/Abundance/Elemental composition; Bivalvia; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using seacarb; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, partial pressure, standard deviation; CO2 vent; Coast and continental shelf; Community composition and diversity; Decapoda; Entire community; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Experimental treatment; Field observation; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gastropoda; Guildline autosal salinometer; Honeywell Durafet pH sensors; Isopoda; Mediterranean Sea; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Polychaeta; Potentiometric open-cell titration; Rocky-shore community; Salinity; Salinity, standard deviation; Sample ID; Sipuncula; Site; Tanaidacea; Temperate; Temperature, standard deviation; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 1056 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Gambi, Maria Cristina; Musco, Luigi; Giangrande, Adriana; Badalamenti, F; Micheli, Florenza; Kroeker, Kristy J (2016): Distribution and functional traits of polychaetes in a CO2 vent system: winners and losers among closely related species. Marine Ecology Progress Series, 550, 121-134, https://doi.org/10.3354/meps11727
    Publication Date: 2024-03-15
    Description: We report on fine taxonomic and functional analyses of polychaetes associated with rocky reefs along a gradient of ocean acidification (OA) at the volcanic CO2 vent system off the Castello Aragonese (Ischia Island, Italy). Percent cover of algae and sessile invertebrates (a determinant of polychaete distribution) was classified into functional groups to disentangle the direct effects of low pH on polychaete abundance from the indirect effects of pH on habitat and other species associations. A total of 6459 polychaete specimens belonging to 83 taxa were collected. Polychaete species richness and abundance dramatically dropped under the extreme low pH conditions due to the disappearance of both calcifying and non-calcifying species. Differences in distribution patterns indicate that the decreasing pH modified the structure and biological traits of polychaete assemblages independent of changes in habitat. A detailed taxonomic analysis highlighted species-specific responses to OA, with closely related species having opposing responses to decreasing pH. This resulted in an increase in the abundance of filter feeders and herbivores with decreasing pH, while sessile polychaetes disappeared in the extreme low pH zones, and were replaced by discretely motile forms. Reproductive traits of the polychaete assemblages changed as well, with brooding species dominating the most acidified zones. The few taxa that were abundant in extreme low pH conditions showed high tolerance to OA (e.g. Amphiglena mediterranea, Syllis prolifera, Platynereis cf. dumerilii, Parafabricia mazzellae, Brifacia aragonensis), and are promising models for further studies on the responses of benthic organisms to the effects of reduced pH.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Aragonite saturation state, standard deviation; Behaviour; Benthos; Bicarbonate ion; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using seacarb; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, partial pressure, standard deviation; Category; CO2 vent; Coast and continental shelf; Community composition and diversity; Development; Entire community; Field observation; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Individuals; Mediterranean Sea; Mortality/Survival; Number of taxa; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Potentiometric; Potentiometric titration; Reproduction; Rocky-shore community; Salinity; Salinity, standard deviation; Sample ID; Site; Temperate; Temperature, standard deviation; Temperature, water; Treatment; Type
    Type: Dataset
    Format: text/tab-separated-values, 14880 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-03-15
    Description: Percent cover of 215 benthic species was quantified using two approaches with scuba diving: i) visual census techniques in Shallow Reef (benthic surveys were performed from 0.5 to 3 m depth) and Reef habitats (benthic surveys at ~10 m depth) dominated by algae and ii) photographic surveys in Caves (benthic surveys at ~3 m depth) and Deep Reef habitats (benthic surveys at ~ 40 m depth) dominated by sessile invertebrate animals. For visual censuses, 12 quadrats (25x25 cm) were haphazardly placed at Vent 1 and Vent 3 and the two corresponding ambient pH sites (n = 3 sites per habitat, n = 36 quadrats for Shallow Reefs and Reefs, respectively). For photographic surveys, 48–54 and 24 photoquadrats (25x25 cm) were taken at Vent 2 and Vent 4 and the two corresponding reference sites with ambient pH for each habitat (n = 3 sites per habitat, n = 144 photographic quadrats for Caves and n = 72 photographic quadrats for Deep Reefs, respectively). Both types of quadrats (visual censuses in the field and photographs in the lab) were divided into a grid of 25 squares (5 cm x 5 cm each). Percentage cover was quantified by counting the number of squares filled in the grid by the species and expressing the final values as relative percentages.
    Keywords: a1a_amb; a1b_amb; a2a_amb; a2b_amb; a3a_amb; a3b_amb; a4a_amb; a4b_amb; Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthos; Bicarbonate ion; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using seacarb; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; CO2 vent; Coast and continental shelf; Community composition and diversity; Condition; Coverage; Entire community; Event label; Field observation; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Mediterranean Sea; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Rocky-shore community; Salinity; Salinity, standard deviation; Sample code/label; Species; Temperate; Temperature, water; Temperature, water, standard deviation; Type of study; v1s_low; v2_low; v3_low; v4_low
    Type: Dataset
    Format: text/tab-separated-values, 110124 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-03-15
    Keywords: Alkalinity, total; Alkalinity, total, standard error; Amphiglena mediterranea; Animalia; Annelida; Aragonite saturation state; Aragonite saturation state, standard error; Area/locality; Benthic animals; Benthos; Bicarbonate ion; Bicarbonate ion, standard error; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calcite saturation state, standard error; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard error; Carbonate ion; Carbonate ion, standard error; Carbonate system computation flag; Carbon dioxide; CO2 vent; Coast and continental shelf; EXP; Experiment; Field experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Ischia; Lysidice collaris; Lysidice ninetta; Mediterranean Sea; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; pH; pH, standard error; Platynereis dumerilii; Polyophthalmus pictus; Potentiometric; Potentiometric titration; Respiration; Respiration rate, oxygen; Sabella spallanzanii; Salinity; Salinity, standard error; Single species; Species; Station label; Syllis prolifera; Temperate; Temperature, water; Temperature, water, standard error; UKOA; United Kingdom Ocean Acidification research programme; Wet mass
    Type: Dataset
    Format: text/tab-separated-values, 6290 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Turner, Lucy M; Ricevuto, Elena; Massa Gallucci, Alexia; Lorenti, Maurizio; Gambi, Maria Cristina; Calosi, Piero (2016): Metabolic responses to high pCO2 conditions at a CO2 vent site in juveniles of a marine isopod species assemblage. Marine Biology, 163(10), https://doi.org/10.1007/s00227-016-2984-x
    Publication Date: 2024-03-15
    Description: We are starting to understand the relationship between metabolic rate responses and species' ability to respond to exposure to high pCO2. However, most of our knowledge has come from investigations of single species. The examination of metabolic responses of closely related species with differing distributions around natural elevated CO2 areas may be useful to inform our understanding of their adaptive significance. Furthermore, little is known about the physiological responses of marine invertebrate juveniles to high pCO2, despite the fact they are known to be sensitive to other stressors, often acting as bottlenecks for future species success. We conducted an in situ transplant experiment using juveniles of isopods found living inside and around a high pCO2 vent (Ischia, Italy): the CO2 'tolerant' Dynamene bifida and 'sensitive' Cymodoce truncata and Dynamene torelliae. This allowed us to test for any generality of the hypothesis that pCO2 sensitive marine invertebrates may be those that experience trade-offs between energy metabolism and cellular homoeostasis under high pCO2 conditions. Both sensitive species were able to maintain their energy metabolism under high pCO2 conditions, but in C. truncata this may occur at the expense of [carbonic anhydrase], confirming our hypothesis. By comparison, the tolerant D. bifida appeared metabolically well adapted to high pCO2, being able to upregulate ATP production without recourse to anaerobiosis. These isopods are important keystone species; however, given they differ in their metabolic responses to future pCO2, shifts in the structure of the marine ecosystems they inhabit may be expected under future ocean acidification conditions.
    Keywords: Adenosine 5-Triphosphate, standard error; Adenosine triphosphate, per unit protein; Alkalinity, total; Alkalinity, total, standard error; Animalia; Aragonite saturation state; Aragonite saturation state, standard error; Arthropoda; Benthic animals; Benthos; Bicarbonate ion; Bicarbonate ion, standard error; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calcite saturation state, standard error; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard error; Carbonate ion; Carbonate ion, standard error; Carbonate system computation flag; Carbon dioxide; Carbonic anhydrase activity, per protein; Carbonic anhydrase activity, standard error; Castello_Aragonese_south; CO2 vent; Coast and continental shelf; Cymodoce truncata; Dynamene bifida; Dynamene torelliae; Event label; EXP; Experiment; Field experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); L-lactate; L-lactate, standard error; Mediterranean Sea; OA-ICC; Ocean Acidification International Coordination Centre; Other metabolic rates; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; pH; pH, standard error; Registration number of species; Replicates; Salinity; Salinity, standard error; San_Pietro_promontory; Single species; Species; St_Anna_rocks; Station label; Survival; Temperate; Temperature, water; Temperature, water, standard error; Treatment; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 930 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-03-15
    Description: To understand the effects of ocean acidification (OA) on marine calcifiers, the trade-offs among different sublethal responses within individual species and the emergent effects of these trade-offs must be determined in an ecosystem setting. Crustose coralline algae (CCA) provide a model to test the ecological consequences of such sublethal effects as they are important in ecosystem functioning, service provision, carbon cycling and use dissolved inorganic carbon to calcify and photosynthesize. Settlement tiles were placed in ambient pH, low pH and extremely low pH conditions for 14 months at a natural CO2 vent. The size, magnesium (Mg) content and molecular-scale skeletal disorder of CCA patches were assessed at 3.5, 6.5 and 14 months from tile deployment. Despite reductions in their abundance in low pH, the largest CCA from ambient and low pH zones were of similar sizes and had similar Mg content and skeletal disorder. This suggests that the most resilient CCA in low pH did not trade-off skeletal structure to maintain growth. CCA that settled in the extremely low pH, however, were significantly smaller and exhibited altered skeletal mineralogy (high Mg calcite to gypsum (hydrated calcium sulfate)), although at present it is unclear if these mineralogical changes offered any fitness benefits in extreme low pH. This field assessment of biological effects of OA provides endpoint information needed to generate an ecosystem relevant understanding of calcifying system persistence.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Aragonite saturation state, standard deviation; Area; Benthos; Bicarbonate ion; Biomass/Abundance/Elemental composition; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; CO2 vent; Coast and continental shelf; Entire community; Field observation; Frequency; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Full width at half maximum; Growth/Morphology; Mediterranean Sea; Month; OA-ICC; Ocean Acidification International Coordination Centre; Other studied parameter or process; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Rocky-shore community; Salinity; Salinity, standard deviation; Site; Temperate; Temperature, water; Temperature, water, standard deviation; Type; Zone
    Type: Dataset
    Format: text/tab-separated-values, 4663 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...