GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 463 (1986), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 341 (1980), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1424
    Keywords: potential-dependent dye ; oxonol dye ; mechanism ; lipid bilayer ; oxidized cholesterol ; membrane potential
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary We have measured potential-dependent changes in the absorption of light by oxidized cholesterol bilayer lipid membranes in the presence of impermeant oxonol dyes. The magnitude of the absorption signal increased linearly with the size of potential steps over a range of 500 mV. The signal also increased when the offset voltage of the pulse train was increased from −150 to +150 mV. The data are consistent with the “on-off” mechanism proposed by E. B. George et al. (J. Membrane Biol.103:245–253, 1988) in which the probe undergoes potential-dependent movement between a binding site in the membrane and an aqueous region just off the surface of the membrane. An equilibrium thermodynamic analysis of the experimental data indicates that the negatively charged oxonol chromophore senses only 5–10% of the total membrane potential difference across the membrane when it is driven into a nonpolar binding site on the membrane.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1424
    Keywords: potential-dependent dye ; oxonol dye ; membrane ; lipid bilayer ; dye binding ; mechanism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary We have measured the potential-dependent light absorption changes of 43 impermeant oxonol dyes with an oxidized cholesterol bilayer lipid membrane system. The size of the signal is strongly dependent on the chain length of alkyl groups attached to the chromophore. Dye molecules with intermediate chain lengths give the largest signals. To better understand the dependence of the absorbance signal on alkyl chain length, a simple equilibrium thermodynamic analysis has been derived. The analysis uses the free energy of dye binding to the membrane and the “on-off” model (E.B. George et al.,J. Membrane Biol.,103:245–253, 1988a) for the potential-sensing mechanism. In this model, a population of dye molecules in nonpolar membrane binding sites is in a potential-dependent equilibrium with a second population of dye that resides in an unstirred layer adjacent to the membrane. Dye in the unstirred layer is in a separate equilibrium with dye in the bulk bathing solution. The equilibrium binding theory predicts a “sigmoidally shaped” increase in signal with increasing alkyl chain length, even for very nonpolar dyes. We suggest that aggregation of the more hydrophobic dyes in the membrane bathing solution may be responsible for their low signals, which are not predicted by the theory.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1424
    Keywords: oxonol ; potential-sensitive dyes ; mechanism ; bilayer lipid membrane ; red blood cells ; absorption spectrum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary This series of papers addresses the mechanism by which certain impermeant oxonol dyes respond to membranepotential changes, denoted ΔE m . Hemispherical oxidized cholesterol bilayer membranes provided a controlled model membrane system for determining the dependence of the light absorption signal from the dye on parameters such as the wavelength and polarization of the light illuminating the membrane, the structure of the dye, and ΔE m . This paper is concerned with the determination and analysis of absorption spectral changes of the dye RGA461 during trains of step changes ofE m . The wavelength dependence of the absorption signal is consistent with an “on-off” mechanism in which dye molecules are driven by potential changes between an aqueous region just off the membrane and a relatively nonpolar binding site on the membrane. Polarization data indicate that dye molecules in the membrane site tend to orient with the long axis of the chromophore perpendicular to the surface of the membrane. Experiments with hyperpolarized human red blood cells confirmed that the impermeant oxonols undergo a potential-dependent partition between the membrane and the bathing medium.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-06-25
    Description: The ability of Clostridium perfringens type C to cause human enteritis necroticans (EN) is attributed to beta toxin (CPB). However, many EN strains also express C. perfringens enterotoxin (CPE), suggesting that CPE could be another contributor to EN. Supporting this possibility, lysate supernatants from modified Duncan-Strong sporulation (MDS) medium cultures of three CPE-positive type C EN strains caused enteropathogenic effects in rabbit small intestinal loops, which is significant since CPE is produced only during sporulation and since C. perfringens can sporulate in the intestines. Consequently, CPE and CPB contributions to the enteropathogenic effects of MDS lysate supernatants of CPE-positive type C EN strain CN3758 were evaluated using isogenic cpb and cpe null mutants. While supernatants of wild-type CN3758 MDS lysates induced significant hemorrhagic lesions and luminal fluid accumulation, MDS lysate supernatants of the cpb and cpe mutants caused neither significant damage nor fluid accumulation. This attenuation was attributable to inactivating these toxin genes since complementing the cpe mutant or reversing the cpb mutation restored the enteropathogenic effects of MDS lysate supernatants. Confirming that both CPB and CPE are needed for the enteropathogenic effects of CN3758 MDS lysate supernatants, purified CPB and CPE at the same concentrations found in CN3758 MDS lysates also acted together synergistically in rabbit small intestinal loops; however, only higher doses of either purified toxin independently caused enteropathogenic effects. These findings provide the first evidence for potential synergistic toxin interactions during C. perfringens intestinal infections and support a possible role for CPE, as well as CPB, in some EN cases.
    Print ISSN: 0019-9567
    Electronic ISSN: 1098-5522
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-22
    Description: Clostridium perfringens enterotoxin (CPE) is responsible for the gastrointestinal symptoms of C. perfringens type A food poisoning and some cases of nonfoodborne gastrointestinal diseases, such as antibiotic-associated diarrhea. In the presence of certain predisposing medical conditions, this toxin can also be absorbed from the intestines to cause enterotoxemic death. CPE action in vivo involves intestinal damage, which begins at the villus tips. The cause of this CPE-induced intestinal damage is unknown, but CPE can induce caspase-3-mediated apoptosis in cultured enterocyte-like Caco-2 cells. Therefore, the current study evaluated whether CPE activates caspase-3 in the intestines and, if so, whether this effect is required for the development of intestinal tissue damage or enterotoxemic lethality. Using a mouse ligated small intestinal loop model, CPE was shown to cause intestinal caspase-3 activation in a dose- and time-dependent manner. Most of this caspase-3 activation occurred in epithelial cells shed from villus tips. However, CPE-induced caspase-3 activation occurred after the onset of tissue damage. Furthermore, inhibition of intestinal caspase-3 activity did not affect the onset of intestinal tissue damage. Similarly, inhibition of intestinal caspase-3 activity did not reduce CPE-induced enterotoxemic lethality in these mice. Collectively, these results demonstrate that caspase-3 activation occurs in the CPE-treated intestine but that this effect is not necessary for the development of CPE-induced intestinal tissue damage or enterotoxemic lethality.
    Print ISSN: 0019-9567
    Electronic ISSN: 1098-5522
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-05-13
    Description: Clostridium perfringens enterotoxin causes the gastrointestinal (GI) symptoms of C. perfringens type A food poisoning and CPE-associated non-food-borne human GI diseases. It is well established that CPE induces fluid accumulation and severe tissue damage in ligated small intestinal loops of rabbits and other animals. However, a previous study had also reported that CPE binds to rabbit colonic cells yet does not significantly affect rabbit colonic loops. To the contrary, the current study determined that treatment with 50 or 100 μg/ml of CPE causes significant histologic lesions and luminal fluid accumulation in rabbit colonic loops. Interestingly, a CPE-neutralizing monoclonal antibody blocked the development of CPE-induced histologic damage but not luminal fluid accumulation in these loops. Similar luminal fluid accumulation, without significant histologic damage, also occurred after treatment of colonic loops with heat-inactivated CPE, antibody alone, or bovine serum albumin (BSA), indicating that increased osmolarity was causing or contributing to fluid accumulation in CPE-treated colonic loops. Comparative studies revealed the similar development of histologic damage and luminal fluid accumulation in both small intestinal loops and colonic loops after as little as a 1-h treatment with 50 μg/ml of CPE. Consistent with the CPE sensitivity of the small intestine and colon, Western blotting detected CPE binding and large-complex formation in both organs. In addition, Western blotting demonstrated the presence of the high-affinity CPE receptors claudin-3 and -4 in both organs of rabbits, consistent with the observed toxin binding. Collectively, these results offer support for the possible involvement of the colon in CPE-mediated GI disease.
    Print ISSN: 0019-9567
    Electronic ISSN: 1098-5522
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-02-24
    Description: Clostridium perfringens type D strains cause enterotoxemia and enteritis in livestock via epsilon toxin production. In type D strain CN3718, CodY was previously shown to increase the level of epsilon toxin production and repress sporulation. C. perfringens type A strains producing C. perfringens enterotoxin (CPE) cause human food poisoning and antibiotic-associated diarrhea. Sporulation is critical for C. perfringens type A food poisoning since spores contribute to transmission and resistance in the harsh food environment and sporulation is essential for CPE production. Therefore, the current study asked whether CodY also regulates sporulation and CPE production in SM101, a derivative of C. perfringens type A food-poisoning strain NCTC8798. An isogenic codY -null mutant of SM101 showed decreased levels of spore formation, along with lower levels of CPE production. A complemented strain recovered wild-type levels of both sporulation and CPE production. When this result was coupled with the earlier results obtained with CN3718, it became apparent that CodY regulation of sporulation varies among different C. perfringens strains. Results from quantitative reverse transcriptase PCR analysis clearly demonstrated that, during sporulation, codY transcript levels remained high in SM101 but rapidly declined in CN3718. In addition, abrB gene expression patterns varied significantly between codY -null mutants of SM101 and CN3718. Compared to the levels in their wild-type parents, the level of abrB gene expression decreased in the CN3718 codY -null mutant strain but significantly increased in the SM101 codY -null mutant strain, demonstrating CodY-dependent regulation differences in abrB expression between these two strains. This difference appears to be important since overexpression of the abrB gene in SM101 reduced the levels of sporulation and enterotoxin production, supporting the involvement of AbrB repression in regulating C. perfringens sporulation.
    Print ISSN: 0019-9567
    Electronic ISSN: 1098-5522
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-11-18
    Description: The c-di-GMP network of Borrelia burgdorferi , a causative agent of Lyme disease, consists of Rrp1, a diguanylate cyclase/response regulator; Hpk1, a histidine kinase; PdeA and PdeB, c-di-GMP phosphodiesterases; and PlzA, a PilZ domain c-di-GMP receptor. Borrelia hermsii , a causative agent of tick-borne relapsing fever, possesses a putative c-di-GMP regulatory network that is uncharacterized. While B. burgdorferi requires c-di-GMP to survive within ticks, the associated effector mechanisms are poorly defined. Using site-directed mutagenesis, size exclusion chromatography, isothermal titration calorimetry and fluorescence resonance energy transfer, we investigate the interaction of c-di-GMP with the Borrelia PilZ domain-containing Plz proteins: B. burgdorferi PlzA and B. hermsii PlzC. The Plz proteins were determined to be monomeric in their apo and holo forms and to bind c-di-GMP with high affinity with a 1:1 stoichiometry. C-di-GMP binding induced structural rearrangements in PlzA and PlzC. C-di-GMP binding proved to be dependent on positive charge at R 145 of the PilZ domain motif, R 145 xxxR. Comparative sequence analyses led to the identification of Borrelia consensus sequences for the PilZ domain signature motifs. This study provides insight into c-di-GMP:Plz receptor interaction and identifies a possible switch mechanism that may regulate Plz protein effector functions.
    Print ISSN: 0928-8244
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...