GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    In: Paleoceanography, American Geophysical Union (AGU), Vol. 3, No. 3 ( 1988-06), p. 361-399
    Abstract: Based on detailed reconstructions of global distribution patterns, both paleoproductivity and the benthic δ 13 C record of CO 2 , which is dissolved in the deep ocean, strongly differed between the Last Glacial Maximum and the Holocene. With the onset of Termination I about 15,000 years ago, the new (export) production of low‐ and mid‐latitude upwelling cells started to decline by more than 2‐4 Gt carbon/year. This reduction is regarded as a main factor leading to both the simultaneous rise in atmospheric CO 2 as recorded in ice cores and, with a slight delay of more than 1000 years, to a large‐scale gradual CO 2 depletion of the deep ocean by about 650 Gt C. This estimate is based on an average increase in benthic δ 13 C by 0.4–0.5‰. The decrease in new production also matches a clear 13 C depletion of organic matter, possibly recording an end of extreme nutrient utilization in upwelling cells. As shown by Sarnthein et al., [1987], the productivity reversal appears to be triggered by a rapid reduction in the strength of meridional trades, which in turn was linked via a shrinking extent of sea ice to a massive increase in high‐latitude insolation, i.e., to orbital forcing as primary cause.
    Type of Medium: Online Resource
    ISSN: 0883-8305 , 1944-9186
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1988
    detail.hit.zdb_id: 637876-6
    detail.hit.zdb_id: 2015231-0
    detail.hit.zdb_id: 2916554-4
    SSG: 16,13
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...