GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2019
    In:  Journal of Physical Oceanography Vol. 49, No. 12 ( 2019-12), p. 3127-3143
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 49, No. 12 ( 2019-12), p. 3127-3143
    Abstract: The Intermediate Western Boundary Current (IWBC) transports Antarctic Intermediate Water across the Vitória–Trindade Ridge (VTR), a seamount chain at ~20°S off Brazil. Recent studies suggest that the IWBC develops a strong cyclonic recirculation in Tubarão Bight, upstream of the VTR, with weak time dependency. We herein use new quasi-synoptic observations, data from the Argo array, and a regional numerical model to describe the structure and variability of the IWBC and to investigate its dynamics. Both shipboard acoustic Doppler current profiler (ADCP) data and trajectories of Argo floats confirm the existence of the IWBC recirculation, which is also captured by our Regional Oceanic Modeling System (ROMS) simulation. An “intermediate-layer” quasigeostrophic (QG) model indicates that the ROMS time-mean flow is a good proxy for the IWBC steady state, as revealed by largely parallel isolines of streamfunction and potential vorticity ; a scatter diagram also shows that the IWBC is potentially unstable. Further analysis of the ROMS simulation reveals that remotely generated, westward-propagating nonlinear eddies are the main source of variability in the region. These eddies enter the domain through the Tubarão Bight eastern edge and strongly interact with the IWBC. As they are advected downstream and negotiate the local topography, the eddies grow explosively through horizontal shear production.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2019
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 1977
    In:  Journal of Physical Oceanography Vol. 7, No. 2 ( 1977-03), p. 300-302
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 7, No. 2 ( 1977-03), p. 300-302
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 1977
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Physical Society (APS) ; 2017
    In:  Physical Review E Vol. 96, No. 4 ( 2017-10-30)
    In: Physical Review E, American Physical Society (APS), Vol. 96, No. 4 ( 2017-10-30)
    Type of Medium: Online Resource
    ISSN: 2470-0045 , 2470-0053
    RVK:
    Language: English
    Publisher: American Physical Society (APS)
    Publication Date: 2017
    detail.hit.zdb_id: 2844562-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 1984
    In:  Journal of Physical Oceanography Vol. 14, No. 2 ( 1984-02), p. 412-423
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 14, No. 2 ( 1984-02), p. 412-423
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 1984
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Elsevier BV ; 1988
    In:  Dynamics of Atmospheres and Oceans Vol. 12, No. 1 ( 1988-10), p. v-
    In: Dynamics of Atmospheres and Oceans, Elsevier BV, Vol. 12, No. 1 ( 1988-10), p. v-
    Type of Medium: Online Resource
    ISSN: 0377-0265
    Language: English
    Publisher: Elsevier BV
    Publication Date: 1988
    detail.hit.zdb_id: 2001552-5
    detail.hit.zdb_id: 199173-5
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2015
    In:  Journal of Statistical Physics Vol. 158, No. 3 ( 2015-2), p. 665-698
    In: Journal of Statistical Physics, Springer Science and Business Media LLC, Vol. 158, No. 3 ( 2015-2), p. 665-698
    Type of Medium: Online Resource
    ISSN: 0022-4715 , 1572-9613
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2015
    detail.hit.zdb_id: 2017302-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2010
    In:  Geophysical Research Letters Vol. 37, No. 1 ( 2010-01), p. n/a-n/a
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 37, No. 1 ( 2010-01), p. n/a-n/a
    Type of Medium: Online Resource
    ISSN: 0094-8276
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2010
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Meteorological Society ; 2007
    In:  Journal of Physical Oceanography Vol. 37, No. 6 ( 2007-06-01), p. 1470-1487
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 37, No. 6 ( 2007-06-01), p. 1470-1487
    Abstract: Analysis of spectral kinetic energy fluxes in satellite altimetry data has demonstrated that an inverse cascade of kinetic energy is ubiquitous in the ocean. In geostrophic turbulence models, a fully developed inverse cascade results in barotropic eddies with large horizontal scales. However, midocean eddies contain substantial energy in the baroclinic mode and in compact horizontal scales (scales comparable to the deformation radius Ld). This paper examines the possibility that relatively strong bottom friction prevents the oceanic cascade from becoming fully developed. The importance of the vertical structure of friction is demonstrated by contrasting numerical simulations of two-layer quasigeostrophic turbulence forced by a baroclinically unstable mean flow and damped by bottom Ekman friction with turbulence damped by vertically symmetric Ekman friction (equal decay rates in the two layers). “Cascade inequalities” derived from the energy and enstrophy equations are used to interpret the numerical results. In the symmetric system, the inequality formally requires a cascade to large-scale barotropic flow, independent of the stratification. The inequality is less strict when friction is in the bottom layer only, especially when stratification is surface intensified. Accordingly, model runs with surface-intensified stratification and relatively strong bottom friction retain substantial small-scale baroclinic energy. Altimetric data show that the symmetric inequality is violated in the low- and midlatitude ocean, again suggesting the potential impact of the “bottomness” of friction on eddies. Inequalities developed for multilayer turbulence suggest that high baroclinic modes in the mean shear also enhance small-scale baroclinic eddy energy. The inequalities motivate a new interpretation of barotropization in weakly damped turbulence. In that limit the barotropic mode dominates the spatial average of kinetic energy density because large values of barotropic density are found throughout the model domain, consistent with the barotropic cascade to large horizontal scales, while baroclinic density is spatially localized.
    Type of Medium: Online Resource
    ISSN: 1520-0485 , 0022-3670
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2007
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Meteorological Society ; 2012
    In:  Journal of Physical Oceanography Vol. 42, No. 9 ( 2012-09-01), p. 1577-1600
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 42, No. 9 ( 2012-09-01), p. 1577-1600
    Abstract: Motivated by the ubiquity of time series in oceanic data, the relative lack of studies of geostrophic turbulence in the frequency domain, and the interest in quantifying the contributions of intrinsic nonlinearities to oceanic frequency spectra, this paper examines the spectra and spectral fluxes of surface oceanic geostrophic flows in the frequency domain. Spectra and spectral fluxes are computed from idealized two-layer quasigeostrophic (QG) turbulence models and realistic ocean general circulation models, as well as from gridded satellite altimeter data. The frequency spectra of the variance of streamfunction (akin to sea surface height) and of geostrophic velocity are qualitatively similar in all of these, with substantial variance extending out to low frequencies. The spectral flux Π(ω) of kinetic energy in the frequency ω domain for the QG model documents a tendency for nonlinearity to drive energy toward longer periods, in like manner to the inverse cascade toward larger length scales documented in calculations of the spectral flux Π(k) in the wavenumber k domain. Computations of Π(ω) in the realistic model also display an “inverse temporal cascade.” In satellite altimeter data, some regions are dominated by an inverse temporal cascade, whereas others exhibit a forward temporal cascade. However, calculations performed with temporally and/or spatially filtered output from the models demonstrate that Π(ω) values are highly susceptible to the smoothing inherent in the construction of gridded altimeter products. Therefore, at present it is difficult to say whether the forward temporal cascades seen in some regions in altimeter data represent physics that is missing in the models studied here or merely sampling artifacts.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2012
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Meteorological Society ; 2007
    In:  Journal of the Atmospheric Sciences Vol. 64, No. 9 ( 2007-09-01), p. 3177-3194
    In: Journal of the Atmospheric Sciences, American Meteorological Society, Vol. 64, No. 9 ( 2007-09-01), p. 3177-3194
    Abstract: In this paper it is proposed that baroclinic instability of even a weak shear may play an important role in the generation and stability of the strong zonal jets observed in the atmospheres of the giant planets. The atmosphere is modeled as a two-layer structure, where the upper layer is a standard quasigeostrophic layer on a β plane and the lower layer is parameterized to represent a deep interior convective columnar structure using a negative β plane as in Ingersoll and Pollard. Linear stability theory predicts that the high wavenumber perturbations will be the dominant unstable modes for a small vertical wind shear like that inferred from observations. Here a nonlinear analytical model is developed that is truncated to one growing mode that exhibits a multiple jet meridional structure, driven by the nonlinear interaction between the eddies. In the weakly supercritical limit, this model agrees with previous weakly nonlinear theory, but it can be explored beyond this limit allowing the multiple jet–induced zonal flow to be stronger than the eddy field. Calculations with a fully nonlinear pseudospectral model produce stable meridional multijet structures when beginning from a random potential vorticity perturbation field. The instability removes energy from the background weak baroclinic shear and generates turbulent eddies that undergo an inverse energy cascade and form multijet zonal winds. The jets are the dominant feature in the instantaneous upper-layer flow, with the eddies being relatively weak. The jets scale with the Rhines length, but are strong enough to violate the barotropic stability criterion. It is shown that the basic physical mechanism for the generation and stability of the jets in the full numerical model is similar to that of the truncated model.
    Type of Medium: Online Resource
    ISSN: 1520-0469 , 0022-4928
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2007
    detail.hit.zdb_id: 218351-1
    detail.hit.zdb_id: 2025890-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...