GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2024-04-20
    Beschreibung: Different observation and modeling techniques were used to derive integrated water vapor (IWV) fields for the Upper Rhine Graben in the border region of Germany, Switzerland, and France. The dataset features 1) point-scale IWV and zenith total delay (ZTD) derived for 66 stations of the global navigation satellite system (GNSS) Upper Rhine Graben network (GURN), 2) area-distributed IWV and differential slant path delays from space-borne Interferometric synthetic aperture radar (InSAR) observations, 3) IWV, ZTD, refractivity (3D), and water vapor density (3D) from tomography, obtained by collocation of GNSS and InSAR products, and 4) IWV, precipitation and water vapor density (3D) simulated with the Weather Research and Forecasting Modeling system (WRF) with free run (open-loop) and three-dimensional variational data-assimilation (3D-VAR) configuration. All data products cover 4 seasonal epochs (11 – 22 Apr 2016, 13 – 24 Jul 2018, 16 – 31 Oct 2018, 06 – 21 Jan 2017). GNSS, InSAR, and tomography data are additionally available for the period Jan 2015 – Jun 2019.
    Schlagwort(e): Atmosphere; AtmoWater; Data Assimilation; GNSS; GURN; High-Resolution Atmospheric Water Vapor Fields by Spaceborne Geodetic Sensing, Tomographic Fusion, and Atmospheric Modeling; InSAR; integrated water vapor; moisture; MULT; Multiple investigations; Upper_Rhine_Graben; WRF
    Materialart: Dataset
    Format: application/zip, 4 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2024-04-20
    Beschreibung: Convection-permitting simulations with the Weather Research and Forecasting Modeling System (WRF) were carried out in order to provide improved water vapor fields for the Upper Rhine Valley in the border region of ​​Germany, Switzerland and France. Hourly ERA5 reanalysis data served as input for three different simulations with (1) open loop, (2) assimilation of GNSS ZTD, InSAR ZTD and synoptic station data and (3) assimilation of tomography ZTD fields. The three-dimensional variation data assimilation (3D-VAR) configuration with hourly resolution was used. The simulations were performed for four events, one in each season (April 11-22, 2016, July 13-23, 2018, October 16-31, 2018, January 6-21, 2017). Surface pressure, temperature (2m) and integrated water vapor are provided in 2D as well as pressure, temperature and water vapor density for each of the 72 vertical levels (3D).
    Schlagwort(e): Atmosphere; AtmoWater; Binary Object; Data Assimilation; File content; GNSS; GURN; High-Resolution Atmospheric Water Vapor Fields by Spaceborne Geodetic Sensing, Tomographic Fusion, and Atmospheric Modeling; InSAR; integrated water vapor; moisture; MULT; Multiple investigations; Upper_Rhine_Graben; WRF
    Materialart: Dataset
    Format: text/tab-separated-values, 66 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-04-01
    Beschreibung: The interaction between the land surface and the atmosphere is a crucial driver of atmospheric processes. Soil moisture and precipitation are key components in this feedback. Both variables are intertwined in a cycle, that is, the soil moisture – precipitation feedback for which involved processes and interactions are still discussed. In this study the soil moisture – precipitation feedback is compared for the sempiternal humid Ammer catchment in Southern Germany and for the semiarid to subhumid Sissili catchment in West Africa during the warm season, using precipitation datasets from the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), from the German Weather Service (REGNIE) and simulation datasets from the Weather Research and Forecasting (WRF) model and the hydrologically enhanced WRF‐Hydro model. WRF and WRF‐Hydro differ by their representation of terrestrial water flow. With this setup we want to investigate the strength, sign and variables involved in the soil moisture – precipitation feedback for these two regions. The normalized model spread between the two simulation results shows linkages between precipitation variability and diagnostic variables surface fluxes, moisture flux convergence above the surface and convective available potential energy in both study regions. The soil moisture – precipitation feedback is evaluated with a classification of soil moisture spatial heterogeneity based on the strength of the soil moisture gradients. This allows us to assess the impact of soil moisture anomalies on surface fluxes, moisture flux convergence, convective available potential energy and precipitation. In both regions the amount of precipitation generally increases with soil moisture spatial heterogeneity. For the Ammer region the soil moisture – precipitation feedback has a weak negative sign with more rain near drier patches while it has a positive signal for the Sissili region with more rain over wetter patches. At least for the observed moderate soil moisture values and the spatial scale of the Ammer region, the spatial variability of soil moisture is more important for surface‐atmosphere interactions than the actual soil moisture content. Overall, we found that soil moisture heterogeneity can greatly affect the soil moisture – precipitation feedback.
    Beschreibung: WRF and WRF‐hydro model simulations are used to determine the sign and analyse the mechanisms of the soil moisture ‐ precipitation feedback for the sempiternal humid Ammer catchment in Southern Germany and for the semiarid to subhumid Sissili catchment in West Africa during the warm season. The generation of moist convection is favoured over surfaces with moderately high soil moisture gradients in the Ammer region, while for the Sissili region the location of precipitation tends to be related to areas with high soil moisture gradients. For the Ammer region the soil moisture – precipitation feedback has a weak negative sign with more rain near drier patches while it has a positive signal for the Sissili region with more rain over wetter patches.
    Beschreibung: Untersuchung des Klimas des südlichen Afrikas – ein Brückenschlag vom frühen Holozän bis heute
    Beschreibung: Transregional Collaborative Research Center
    Schlagwort(e): ddc:551.57 ; ddc:631.4
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2022-03-24
    Beschreibung: The regional terrestrial water cycle is strongly altered by human activities. Among them, reservoir regulation is a way to spatially and temporally allocate water resources in a basin for multi‐purposes. However, it is still not sufficiently understood how reservoir regulation modifies the regional terrestrial‐ and subsequently, the atmospheric water cycle. To address this question, the representation of reservoir regulation into the terrestrial component of fully coupled regional Earth system models is required. In this study, an existing process‐based reservoir network module is implemented into NOAH‐HMS, that is, the terrestrial component of an atmospheric–hydrologic modelling system, namely, the WRF‐HMS. It allows to quantitatively differentiate role of reservoir regulation and of groundwater feedback in a simulated ground‐soil‐vegetation continuum. Our study focuses on the Poyang Lake basin, where the largest freshwater lake of China and reservoirs of different sizes are located. As compared to streamflow observations, the newly extended NOAH‐HMS slightly improves the streamflow and streamflow duration curves simulation for the Poyang Lake basin for the period 1979–1986. The inclusion of reservoir regulation leads to major changes in the simulated groundwater recharges and evaporation from reservoirs at local scale, but has minor effects on the simulated soil moisture and surface runoff at basin scale. The performed groundwater feedback sensitivity analysis shows that the strength of the groundwater feedback is not altered by the consideration of reservoir regulation. Furthermore, both reservoir regulation and groundwater feedback modify the partitioning of the simulated evapotranspiration, thus affecting the atmospheric water cycle in the Poyang Lake region. This finding motivates future research with our extended fully coupled atmospheric–hydrologic modelling system by the community.
    Beschreibung: An existing process‐based reservoir network module is implemented into the terrestrial component NOAH‐HMS of the atmospheric–hydrologic modelling system WRF‐HMS. The inclusion of reservoir regulation leads to major changes in the simulated groundwater recharges and evaporation from reservoirs at local scale, but does not alter the strength of the groundwater feedback. Reservoir regulation and groundwater feedback play different roles in modifying the regional terrestrial water cycle for the Poyang Lake basin, particularly with respect to the partitioning of the simulated evapotranspiration.
    Beschreibung: German Federal Ministry of Science and Education
    Beschreibung: German Research Foundation http://dx.doi.org/10.13039/501100001659
    Beschreibung: National Key R&D Program of China
    Beschreibung: National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809
    Schlagwort(e): ddc:551.49
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2021-09-29
    Beschreibung: It is well accepted that summer precipitation can be altered by soil moisture condition. Coupled land surface – atmospheric models have been routinely used to quantify soil moisture – precipitation feedback processes. However, most of the land surface models (LSMs) assume a vertical soil water transport and neglect lateral terrestrial water flow at the surface and in the subsurface, which potentially reduces the realism of the simulated soil moisture – precipitation feedback. In this study, the contribution of lateral terrestrial water flow to summer precipitation is assessed in two different climatic regions, Europe and West Africa, for the period June–September 2008. A version of the coupled atmospheric‐hydrological model WRF‐Hydro with an option to tag and trace land surface evaporation in the modelled atmosphere, named WRF‐Hydro‐tag, is employed. An ensemble of 30 simulations with terrestrial routing and 30 simulations without terrestrial routing is generated with random realizations of turbulent energy with the stochastic kinetic energy backscatter scheme, for both Europe and West Africa. The ensemble size allows to extract random noise from continental‐scale averaged modelled precipitation. It is found that lateral terrestrial water flow increases the relative contribution of land surface evaporation to precipitation by 3.6% in Europe and 5.6% in West Africa, which enhances a positive soil moisture – precipitation feedback and generates more uncertainty in modelled precipitation, as diagnosed by a slight increase in normalized ensemble spread. This study demonstrates the small but non‐negligible contribution of lateral terrestrial water flow to precipitation at continental scale.
    Beschreibung: Ensembles of coupled atmospheric ‐ hydrological simulations are presented for a summer season in Europe and West Africa. The model is enhanced with a water tagging procedure to evaluate the fate of land surface evaporation. The figure shows the change in continental precipitation recycling, that is the fraction of precipitation originating from land surface evaporation, induced by the consideration of lateral terrestrial water flow in the coupled simulations.
    Beschreibung: German Science Foundation
    Schlagwort(e): 551.48 ; continental scale ; coupled modelling ; ensemble ; feedback ; summer precipitation ; terrestrial hydrology
    Materialart: map
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2021-10-06
    Beschreibung: Atmospheric models such as the Weather Research and Forecasting (WRF) model provide a tool to evaluate the behavior of regional hydrological cycle components, including precipitation, evapotranspiration, soil water storage, and runoff. Recent model developments have focused on coupled atmospheric-hydrological modeling systems, such as WRF-Hydro, in order to account for subsurface, overland, and river flow and potentially improve the representation of land-atmosphere interactions. The aim of this study is to investigate the contribution of lateral terrestrial water flow to the regional hydrological cycle, with the help of a joint soil-vegetation-atmospheric water tagging procedure newly developed in the so-called WRF-tag and WRF-Hydro-tag models. An application of both models for the high precipitation event on 15 August 2008 in the German and Austrian parts of the upper Danube river basin (94,100 km2) is presented. The precipitation that fell in the basin during this event is considered as a water source, is tagged, and subsequently tracked for a 40-month period until December 2011. At the end of the study period, in both simulations, approximately 57% of the tagged water has run off, while 41% has evaporated back to the atmosphere, including 2% that has recycled in the upper Danube river basin as precipitation. In WRF-Hydro-tag, the surface evaporation of tagged water is slightly enhanced by surface flow infiltration and slightly reduced by subsurface lateral water flow in areas with low topography gradients. This affects the source precipitation recycling only in a negligible amount.
    Schlagwort(e): 551.5 ; soil-vegetation-atmospheric moisture tagging ; precipitation partitioning ; coupled modeling ; Danube river basin
    Sprache: Englisch
    Materialart: map
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2022-03-29
    Beschreibung: Water isotopologues, as natural tracers of the hydrological cycle on Earth, provide a unique way to assess the skill of climate models in representing realistic atmospheric‐terrestrial water pathways. This study presents the newly developed WRF‐Hydro‐iso, which is a version of the coupled atmospheric‐hydrological WRF‐Hydro model enhanced with a joint soil‐vegetation‐atmospheric description of water isotopologue motions. It allows the consideration of isotopic fractionation processes during water phase changes in the atmosphere, the land surface, and the subsurface. For validation, WRF‐Hydro‐iso is applied to two different climate zones, namely Europe and Southern Africa under the present climate conditions. Each case is modeled with a domain employing a 5 km grid‐spacing coupled with a terrestrial subgrid employing a 500 m grid‐spacing in order to represent lateral terrestrial water flow. A 10‐year slice is simulated for 2003–2012, using ERA5 reanalyses as driving data. The boundary condition of isotopic variables is prescribed with mean values from a 10‐year simulation with the Community Earth System Model Version 1. WRF‐Hydro‐iso realistically reproduces the climatological variations of the isotopic concentrations δPO18 and δPH2 from the Global Network of Isotopes in Precipitation. In a sensitivity analysis, it is found that land surface evaporation fractionation increases the isotopic concentrations in the rootzone soil moisture and slightly decreases the isotopic concentrations in precipitation. Lateral terrestrial water flow minorly affects these isotopic concentrations through changes in evaporation‐transpiration partitioning.
    Beschreibung: Plain Language Summary: Global climate models are limited by their coarse resolution, which may reduce their meaningfulness. This problem can be circumvented for a specific region with regional climate models, which provide, for example, a detailed description of clouds and land‐atmosphere interactions. But it remains a question: How realistic is the model representation of water transport through the different compartments of the hydrological cycle, the atmosphere, the land, and the sea? A unique way to assess modeled water transport is the comparison to natural tracers, such as water isotopologues, which requires to include the fate of these water isotopologues in the model. This is what we pursue here with the newly developed WRF‐Hydro‐iso model. A model description and a proof of concept are provided for two climate zones, using the Global Network of Isotopes in Precipitation data set as reference.
    Beschreibung: Key Points: A new coupled atmospheric‐hydrological regional modeling system of water isotopologues is presented. Land surface evaporation fractionation increases the isotopic concentrations in the rootzone. Lateral terrestrial water flow has a minor effect on isotopic concentrations in the rootzone.
    Beschreibung: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Beschreibung: German Federal Ministry of Science and Education
    Beschreibung: Bavarian State Ministry of Science and the Arts
    Schlagwort(e): ddc:551.6
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...