GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2024-02-07
    Beschreibung: Highlights: • A single Saksunarvatn Ash layer was detected in two varved lake cores from N-Germany. • The ash layers in the two cores are dated to 10,282 ± 45 and 10,264 ± 24 cal. BP. • Palynological and geochemical analysis were conducted in proximity of the ash layers. • Environmental disturbance, possibly linked to volcanism, predates the ash fallout. • Evidence for a ca. 15-year-long cooling is recognizable after tephra deposition. Abstract Estimating the environmental and societal impact of recent volcanic eruptions is a task aided by direct measurements and historical sources. Beyond the reach of first-hand accounts, our understanding of pre-historic volcanism is often hindered by dating uncertainties inherent to geological archives. Here, we minimize dating errors by analyzing the annually laminated sequences of two Central European lakes, Poggensee and Woseriner See. We focus on environmental transformations that occurred in the decades preceding and following the deposition of the Icelandic Saksunarvatn tephra, dated between ca. 10,300 and 10,200 cal. BP. As a first result, we provide two new independent age determinations for the ash layer detected in both sequences. Our estimates (10,264 ± 24 cal. BP at Poggensee and 10,282 ± 45 cal. BP at Woseriner See) place the age of this tephra deposit closer to Greenland estimates than to continental ones, possibly reducing the chronological gap between the multiple fallout events that characterize the Saksunarvatn Ash. A high resolution palaeoenvironmental characterization was carried out via pollen, thin sections and geochemical analysis. Both sequences show traces of a contemporaneous disturbance event dated to ca. 18 years before tephra deposition. In addition, environmental impact compatible with a cooling event is discernible for ca. 15 years following tephra deposition. While independent climate mechanisms can be responsible for the observed trends, we explicitly focus on exploring volcanic eruptions as a possible leading driver. A consistent agreement across all proxies is lacking in the pre-tephra record, yet sulfur enrichment and acidification processes allow us to suggest volcanism as a plausible trigger. Combined with the post-tephra cooling, the two sedimentary records depict a possible scenario of multi-decadal, continuous volcanic impact.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2021-10-07
    Beschreibung: This paper presents evidence for a limnological response to the Laacher See eruption (LSE) as detected in lake sediments from Nahe, northern Germany. The sediment section of the Allerød period dating to between 13 422 and 12 708 cal. a BP is preserved in annual laminations. Within this section, the LSE was identified as a cryptotephra layer (12 944±44 cal. a BP). Microfacies analysis, continuous high-resolution geochemical measurements and pollen analyses enabled a high-resolution reconstruction of environmental change. The older part of the Allerød (c. 13 422 to 12 943 cal. a BP) was characterized by relatively stable sedimentation conditions. Evidence for windier conditions dating to c. 13 160 to 13 080 cal. a BP probably reflects the Gerzensee oscillation. Pronounced changes of the lake sedimentation followed the LSE. Four unusually thick varves with increased amounts of allochthonous material indicate serious disturbance of the local environment immediately after the LSE, related to increased storminess and/or the occurrence of high intensity rainfall events. A pronounced reduction of biogenic silica accumulation for c. 60 years after the LSE could reflect a period of acidification. Indications of a simultaneous lake level increase until c. 60 years after the LSE are in line with the supposed reduced evapotranspiration associated with cooler conditions. About 120 years after the LSE, increased oxygen access at the lake bottom, allochthonous input and Cl fluxes point to an onset of increasingly stronger westerly winds, probably as a long-term response to the LSE. This supports the idea of a southward shift of the mid-latitude westerlies wind system within the interval between the LSE and the beginning of the Younger Dryas. The pace of the southwards shift of this wind system decreased from 10 km a−1 in the initial phase (40–120 years after LSE) to 6 km a−1 in the later phase (120–200 years after LSE).
    Schlagwort(e): 551 ; Laacher See eruption (LSE) ; lake sediments
    Sprache: Englisch
    Materialart: map
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Czymzik, Markus; Dreibrodt, Stefan; Feeser, Ingo; Adolphi, Florian; Brauer, Achim (2016): Mid-Holocene humid periods reconstructed from calcite varves of the Lake Woserin sediment record (north-eastern Germany). The Holocene, 26(6), 935-946, https://doi.org/10.1177/0959683615622549
    Publikationsdatum: 2024-04-05
    Beschreibung: Time-series of varve properties and geochemistry were established from varved sediments of Lake Woserin (north-eastern Germany) covering the recent period AD 2010-1923 and the Mid-Holocene time-window 6400-4950 varve years before present (vyr BP) using microfacies analyses, X-ray fluorescence scanning (µ-XRF), microscopic varve chronology and 14C dating. The microscopic varve chronology was compared to a macroscopic varve chronology for the same sediment interval. Calcite layer thickness during the recent period is significantly correlated to increases in local annual precipitation (r=0.46, p=0.03) and reduced air-pressure (r=-0.72, p〈0.0001). Meteorologically consistent with enhanced precipitation at Lake Woserin, a composite 500 hPa anomaly map for years with 〉1 standard deviation calcite layer thickness depicts a negative wave train air-pressure anomaly centred over southern Europe, with north-eastern Germany at its northern frontal zone. Three centennial-scale intervals of thicker calcite layers around the Mid-Holocene periods 6200-5900, 5750-5400 and 5300-4950 vyr BP might reflect humid conditions favouring calcite precipitation through the transport of Ca2+ ions into Lake Woserin, synchronous to wetter conditions in Europe. Calcite layer thickness oscillations of about 88 and 208 years resemble the solar Gleissberg and Suess cycles suggesting that the recorded hydroclimate changes in north-eastern Germany are modified by solar influences on synoptic-scale atmospheric circulation. However, parts of the periods of thicker calcite layers around 5750-5400 and 5200 vyr BP also coincide to enhanced human catchment activity at Lake Woserin. Therefore, calcite precipitation during these time-windows might have further been favored by anthropogenic deforestation mobilizing Ca2+ ions and/or lake eutrophication.
    Schlagwort(e): Woserin_Lake; Woseriner See, Mecklenburg-West Pomerania, Germany
    Materialart: Dataset
    Format: application/zip, 2 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2024-04-05
    Schlagwort(e): Age; AGE; Varve counting; Varve thickness; Varve thickness, calcit; Varve thickness, diatoms; Varve thickness, organic matter; Woserin_Lake; Woseriner See, Mecklenburg-West Pomerania, Germany
    Materialart: Dataset
    Format: text/tab-separated-values, 440 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2024-04-05
    Schlagwort(e): AGE; Varve age; Varve counting; Varve thickness; Varve thickness, calcit; Varve thickness, diatoms; Varve thickness, organic matter; Woserin_Lake; Woseriner See, Mecklenburg-West Pomerania, Germany
    Materialart: Dataset
    Format: text/tab-separated-values, 7160 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...