GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Asymmetric synthesis. ; Organic compounds -- Synthesis. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (472 pages)
    Edition: 1st ed.
    ISBN: 9783527610631
    DDC: 547.2
    Language: English
    Note: Intro -- Asymmetric Synthesis with Chemical and Biological Methods -- Foreword -- Contents -- Preface -- List of Contributors -- 1 Stoichiometric Asymmetric Synthesis -- 1.1 Development of Novel Enantioselective Synthetic Methods -- 1.1.1 Introduction -- 1.1.2 α-Silyl Ketone-Controlled Asymmetric Syntheses -- 1.1.2.1 Regio- and Enantioselective α-Fluorination of Ketones -- 1.1.2.2 α-Silyl Controlled Asymmetric Mannich Reactions -- 1.1.3 Asymmetric Hetero-Michael Additions -- 1.1.3.1 Asymmetric Aza-Michael Additions -- 1.1.3.2 Asymmetric Oxa-Michael Additions -- 1.1.3.3 Asymmetric Phospha-Michael Additions -- 1.1.4 Asymmetric Syntheses with Lithiated α-Aminonitriles -- 1.1.4.1 Asymmetric Nucleophilic α-Aminoacylation -- 1.1.4.2 Asymmetric Nucleophilic Alkenoylation of Aldehydes -- 1.1.5 Asymmetric Electrophilic α-Substitution of Lactones and Lactams -- 1.1.6 Asymmetric Synthesis of α-Phosphino Ketones and 2-Phosphino Alcohols -- 1.1.7 Asymmetric Synthesis of 1,3-Diols and anti-1,3-Polyols -- 1.1.8 Asymmetric Synthesis of α-Substituted Sulfonamides and Sulfonates -- 1.2 Asymmetric Synthesis of Natural Products Employing the SAMP/RAMP Hydrazone Methodology -- 1.2.1 Introduction -- 1.2.2 Stigmatellin A -- 1.2.3 Callistatin A -- 1.2.4 Dehydroiridodiol(dial) and Neonepetalactone -- 1.2.5 First Enantioselective Synthesis of Dendrobatid Alkaloids Indolizidine 209I and 223J -- 1.2.6 Efficient Synthesis of (2S,12´R)-2-(12´-Aminotridecyl)pyrrolidine, a Defense Alkaloid of the Mexican Bean Beetle -- 1.2.7 2-epi-Deoxoprosopinine -- 1.2.8 Attenol A and B -- 1.2.9 Asymmetric Synthesis of (+)- and (-)-Streptenol A -- 1.2.10 Sordidin -- 1.2.11 Prelactone B and V -- 1.3 Asymmetric Synthesis Based on Sulfonimidoyl-Substituted Allyltitanium Complexes -- 1.3.1 Introduction -- 1.3.2 Hydroxyalkylation of Sulfonimidoyl-Substituted Allylltitanium Complexes. , 1.3.2.1 Sulfonimidoyl-Substituted Bis(allyl)titanium Complexes -- 1.3.2.2 Sulfonimidoyl-Substituted Mono(allyl)tris(diethylamino)titanium Complexes -- 1.3.3 Aminoalkylation of Sulfonimidoyl-Substituted Allyltitanium Complexes -- 1.3.3.1 Sulfonimidoyl-Substituted Bis(allyl)titanium Complexes -- 1.3.3.2 Sulfonimidoyl-Substituted Mono(allyl)tris(diethylamino)titanium Complexes -- 1.3.4 Structure and Reactivity of Sulfonimidoyl-Substituted Allyltitanium Complexes -- 1.3.4.1 Sulfonimidoyl-Substituted Bis(allyl)titanium Complexes -- 1.3.4.2 Sulfonimidoyl-Substituted Mono(allyl)titanium Complexes -- 1.3.5 Asymmetric Synthesis of Homopropargyl Alcohols -- 1.3.6 Asymmetric Synthesis of 2,3-Dihydrofurans -- 1.3.7 Synthesis of Bicyclic Unsaturated Tetrahydrofurans -- 1.3.8 Asymmetric Synthesis of Alkenyloxiranes -- 1.3.9 Asymmetric Synthesis of Unsaturated Mono- and Bicyclic Prolines -- 1.3.10 Asymmetric Synthesis of Bicyclic Amino Acids -- 1.3.11 Asymmetric Synthesis of β-Amino Acids -- 1.3.12 Conclusion -- 1.4 The "Daniphos" Ligands: Synthesis and Catalytic Applications -- 1.4.1 Introduction -- 1.4.2 General Synthesis -- 1.4.3 Applications in Stereoselective Catalysis -- 1.4.3.1 Enantioselective Hydrogenations -- 1.4.3.2 Diastereoselective Hydrogenation of Folic Acid Ester -- 1.4.3.3 Enantioselective Isomerization of Geranylamine to Citronellal -- 1.4.3.4 Nucleophilic Asymmetric Ring-Opening of Oxabenzonorbornadiene -- 1.4.3.5 Enantioselective Suzuki Coupling -- 1.4.3.6 Asymmetric Hydrovinylation -- 1.4.3.7 Allylic Sulfonation -- 1.4.4 Conclusion -- 1.5 New Chiral Ligands Based on Substituted Heterometallocenes -- 1.5.1 Introduction -- 1.5.2 General Properties of Phosphaferrocenes -- 1.5.3 Synthesis of Phosphaferrocenes -- 1.5.4 Preparation of Bidentate P,P and P,N Ligands -- 1.5.5 Modification of the Backbone Structure. , 1.5.6 Cp-Phosphaferrocene Hybrid Systems -- 1.5.7 Catalytic Applications -- 1.5.8 Conclusion -- 2 Catalytic Asymmetric Synthesis -- 2.1 Chemical Methods -- 2.1.1 Sulfoximines as Ligands in Asymmetric Metal Catalysis -- 2.1.1.1 Introduction -- 2.1.1.2 Development of Methods for Sulfoximine Modification -- 2.1.1.3 Sulfoximines as Ligands in Asymmetric Metal Catalysis -- 2.1.1.4 Conclusions -- 2.1.2 Catalyzed Asymmetric Aryl Transfer Reactions -- 2.1.2.1 Introduction -- 2.1.2.2 Catalyst Design -- 2.1.2.3 Catalyzed Aryl Transfer Reactions -- 2.1.3 Substituted [2.2]Paracyclophane Derivatives as Efficient Ligands for Asymmetric 1,2- and 1,4-Addition Reactions -- 2.1.3.1 [2.2]Paracyclophanes as Chiral Ligands -- 2.1.3.2 Synthesis of [2.2]Paracyclophane Ligands -- 2.1.3.2.1 Preparation of FHPC-, AHPC-, and BHPC-Based Imines -- 2.1.3.2 Structural Information on AHPC-Based Imines -- 2.1.3.3 Asymmetric 1,2-Addition Reactions to Aryl Aldehydes -- 2.1.3.3.1 Initial Considerations -- 2.1.3.3.2 Asymmetric Addition Reactions to Aromatic Aldehydes: Scope of Substrates -- 2.1.3.4 Asymmetric Addition Reactions to Aliphatic Aldehydes -- 2.1.3.5 Addition of Alkenylzinc Reagents to Aldehydes -- 2.1.3.6 Asymmetric Conjugate Addition Reactions -- 2.1.3.7 Asymmetric Addition Reactions to Imines -- 2.1.3.8 Asymmetric Addition Reactions on Solid Supports -- 2.1.3.8.1 Applications -- 2.1.3.9 Conclusions and Future Perspective -- 2.1.4 Palladium-Catalyzed Allylic Alkylation of Sulfur and Oxygen Nucleophiles - Asymmetric Synthesis, Kinetic Resolution and Dynamic Kinetic Resolution -- 2.1.4.1 Introduction -- 2.1.4.2 Asymmetric Synthesis of Allylic Sulfones and Allylic Sulfides and Kinetic Resolution of Allylic Esters -- 2.1.4.2.1 Kinetic Resolution -- 2.1.4.2.2 Selectivity -- 2.1.4.2.3 Asymmetric Synthesis -- 2.1.4.2.4 Synthesis of Enantiopure Allylic Alcohols. , 2.1.4.3 Asymmetric Rearrangment and Kinetic Resolution of Allylic Sulfinates -- 2.1.4.3.1 Introduction -- 2.1.4.3.2 Synthesis of Racemic Allylic Sulfinates -- 2.1.4.3.3 Pd-Catalyzed Rearrangement -- 2.1.4.3.4 Kinetic Resolution -- 2.1.4.3.5 Mechanistic Considerations -- 2.1.4.4 Asymmetric Rearrangment of Allylic Thiocarbamates -- 2.1.4.4.1 Introduction -- 2.1.4.4.2 Synthesis of Racemic O-Allylic Thiocarbamates -- 2.1.4.4.3 Acyclic Carbamates -- 2.1.4.4.4 Cyclic Carbamates -- 2.1.4.4.5 Mechanistic Considerations -- 2.1.4.4.6 Synthesis of Allylic Sulfides -- 2.1.4.5 Asymmetric Synthesis of Allylic Thioesters and Kinetic Resolution of Allylic Esters -- 2.1.4.5.1 Introduction -- 2.1.4.5.2 Asymmetric Synthesis of Allylic Thioesters -- 2.1.4.5.3 Kinetic Resolution of Allylic Esters -- 2.1.4.5.4 Memory Effect and Dynamic Kinetic Resolution of the Five-Membered Cyclic Acetate -- 2.1.4.5.5 Asymmetric Synthesis of Cyclopentenyl Thioacetate -- 2.1.4.6 Kinetic and Dynamic Kinetic Resolution of Allylic Alcohols -- 2.1.4.6.1 Introduction -- 2.1.4.6.2 Asymmetric Synthesis of Symmetrical Allylic Alcohols -- 2.1.4.6.3 Asymmetric Synthesis of Unsymmetrical Allylic Alcohols -- 2.1.4.6.4 Asymmetric Synthesis of a Prostaglandin Building Block -- 2.1.4.6.5 Investigation of an Unsaturated Analogue of BPA -- 2.1.4.7 Conclusions -- 2.1.5 The QUINAPHOS Ligand Family and its Application in Asymmetric Catalysis -- 2.1.5.1 Introduction -- 2.1.5.2 Synthetic Strategy -- 2.1.5.3 Stereochemistry and Coordination Properties -- 2.1.5.3.1 Free Ligands -- 2.1.5.3.2 Complexes -- 2.1.5.4 Catalytic Applications -- 2.1.5.4.1 Rhodium-Catalyzed Asymmetric Hydroformylation of Styrene -- 2.1.5.4.2 Rhodium-Catalyzed Asymmetric Hydrogenation of Functionalized Alkenes -- 2.1.5.4.3 Ruthenium-Catalyzed Asymmetric Hydrogenation of Aromatic Ketones. , 2.1.5.4.4 Copper-Catalyzed Enantioselective Conjugate Addition of Diethylzinc to Enones -- 2.1.5.4.5 Nickel-Catalyzed Asymmetric Hydrovinylation -- 2.1.5.4.6 Nickel-Catalyzed Cycloisomerization of 1,6-Dienes -- 2.1.5.5 Conclusions -- 2.1.6 Immobilization of Transition Metal Complexes and Their Application to Enantioselective Catalysis -- 2.1.6.1 Introduction -- 2.1.6.2 Immobilized Rh Diphosphino Complexes as Catalysts for Asymmetric Hydrogenation -- 2.1.6.2.1 Preparation and Characterization of the Immobilized Rh-Diphosphine Complexes -- 2.1.6.2.2 Enantioselective Hydrogenation over Immobilized Rhodium Diphosphine Complexes -- 2.1.6.3 Heterogeneous Asymmetric Epoxidation of Olefins over Jacobsen's Catalyst Immobilized in Inorganic Porous Materials -- 2.1.6.3.1 Preparation and Characterization of Immobilized Jacobsen's Catalysts -- 2.1.6.3.2 Epoxidation of Olefins over Immobilized Jacobsen Catalysts -- 2.1.6.4 Novel Heterogenized Catalysts for Asymmetric Ring-Opening Reactions of Epoxides -- 2.1.6.4.1 Synthesis and Characterization of the Heterogenized Catalysts -- 2.1.6.4.2 Asymmetric Ring Opening of Epoxides over New Heterogenized Catalysts -- 2.1.6.5 Conclusions -- 2.2 Biological Methods -- 2.2.1 Directed Evolution to Increase the Substrate Range of Benzoylformate Decarboxylase from Pseudomonas putida -- 2.2.1.1 Introduction -- 2.2.1.2 Materials and Methods -- 2.2.1.2.1 Reagents -- 2.2.1.2.2 Construction of Strains for Heterologous Expression of BFD and BAL -- 2.2.1.2.3 Polymerase Chain Reactions -- 2.2.1.2.4 Generation of a BFD Variant Library by Random Mutagenesis -- 2.2.1.2.5 High-Throughput Screening for Carboligation Activity with the Substrates Benzaldehyde and Dimethoxyacetaldehyde -- 2.2.1.2.6 Expression and Purification of BFD Variants -- 2.2.1.2.7 Protein Analysis Methods -- 2.2.1.2.8 Enzyme Activity Assays. , 2.2.1.3 Results and Discussion.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Wiesbaden :Springer Vieweg. in Springer Fachmedien Wiesbaden GmbH,
    Keywords: Organic compounds-Synthesis-Congresses. ; Organometallic compounds-Congresses. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (222 pages)
    Edition: 1st ed.
    ISBN: 9783322840622
    DDC: 547.2
    Language: German
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Chemical reactions. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (472 pages)
    Edition: 1st ed.
    ISBN: 9781119006329
    DDC: 547/.2
    Language: English
    Note: Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Foreword -- Preface -- Chapter 1 Definitions and Classifications of MBFTs -- 1.1 Introduction -- 1.2 Definitions -- 1.3 Conclusion and Outlook -- References -- Part I Stereoselective Synthesis of Heterocycles -- Chapter 2 Five-Membered Heterocycles -- 2.1 Introduction -- 2.2 Monocyclic Targets -- 2.2.1 1,3-Dipolar Cycloaddition -- 2.2.2 Michael Addition-Initiated Domino Process -- 2.2.3 Multicomponent Reactions -- 2.2.4 Carbohalogenation Reactions -- 2.2.5 Radical Processes -- 2.3 Fused Polycyclic Targets -- 2.3.1 Cycloaddition Reactions -- 2.3.2 Domino Cyclization Reactions -- 2.4 Bridged Polycyclic Targets -- 2.5 Conclusion and Outlook -- References -- Chapter 3 Six-Membered Heterocycles -- 3.1 Introduction -- 3.2 Monocyclic Targets -- 3.2.1 Nitrogen-Only Heterocycles -- 3.2.2 Oxygen-Containing Heterocycles -- 3.3 Fused Polycyclic Targets -- 3.3.1 Nitrogen-Only Fused Polycyclic Targets -- 3.3.2 Oxygen-Containing Fused Polycyclic Targets -- 3.3.3 Sulfur-Containing Fused Polycyclic Targets -- 3.4 Bridged Polycyclic Targets -- 3.4.1 General Procedure for the Preparation of 2,6-DABCO-Derived Compounds 138 -- 3.5 Polycyclic Spiro Targets -- 3.6 Summary and Outlook -- References -- Chapter 4 Other Heterocycles -- 4.1 Introduction -- 4.2 Synthesis of Medium-Sized Monocyclic, Fused and Bridged Polycyclic Heterocycles -- 4.2.1 Ring Synthesis by Ring Transformation via Rearrangements/Ring Expansions -- 4.2.2 Ring Synthesis by Annulation -- 4.3 Summary and Outlook -- References -- Part II Stereoselective Synthesis of Carbocycles -- Chapter 5 Three- and Four-Membered Carbocycles -- 5.1 Introduction -- 5.2 Cyclopropane Derivatives -- 5.2.1 Organocatalysis and Related Reactions [Michael-Initiated Ring-Closure (MIRC) Reactions] -- 5.2.2 Organometallics and Metal Catalysis. , 5.2.3 Lewis Acid-Promoted Sequences -- 5.2.4 Pericyclic Domino Strategies -- 5.2.5 Radical Domino Strategies -- 5.3 Cyclobutane Derivatives -- 5.3.1 Organocatalyzed Cyclobutanations -- 5.3.2 Organometallics and Metal Catalysis -- 5.3.3 Acid- or Base-Promoted Transformations -- 5.3.4 Multicomponent Reactions (MCRs) -- 5.4 Summary and Outlook -- References -- Chapter 6 Five-Membered Carbocycles -- 6.1 Introduction -- 6.2 Monocyclic Targets -- 6.2.1 Metal-Catalyzed Reactions -- 6.2.2 Organocatalytic Reactions -- 6.2.3 Miscellaneous Reactions -- 6.3 Fused Polycyclic Targets -- 6.3.1 Metal-Catalyzed Reactions -- 6.3.2 Organocatalytic Reactions -- 6.3.3 Lewis Acid-Catalyzed Reactions -- 6.3.4 Miscellaneous Reactions -- 6.4 Bridged Polycyclic Targets -- 6.5 Conclusion and Outlook -- References -- Chapter 7 Stereoselective Synthesis of Six-Membered Carbocycles -- 7.1 Introduction -- 7.2 Metal-Catalyzed Stereoselective Multiple Bond-Forming Transformations -- 7.2.1 Introduction -- 7.2.2 Cycloadditions -- 7.2.3 Metal-Catalyzed Cascades as Formal [2+2+2] Cycloadditions -- 7.2.4 Metal-Catalyzed Cycloisomerization Cascades -- 7.3 Enantioselective Organocatalyzed Synthesis of Six-Membered Rings -- 7.3.1 Organocatalyzed Miscellaneous Reactions -- 7.3.2 Organocatalyzed Cascade and Multicomponent Reactions -- 7.3.3 Polycyclization Cascade Reactions -- 7.4 Stereoselective Multiple Bond-Forming Radical Transformations -- 7.4.1 Intermolecular Cascade Reactions -- 7.4.2 Intramolecular Cascade Reactions -- 7.5 Conclusions -- References -- Chapter 8 Seven- and Eight-Membered Carbocycles -- 8.1 Introduction -- 8.2 Cycloheptenes -- 8.3 Cycloheptadienes -- 8.4 Cycloheptatrienes -- 8.5 Cyclooctenes -- 8.6 Cyclooctadienes -- 8.7 Cyclooctatrienes -- 8.8 Cyclooctatetraenes -- 8.9 Concluding Remarks -- References -- Part III Stereoselective Synthesis of Spirocyclic Compounds. , Chapter 9 Metal-Assisted Methodologies -- 9.1 Introduction -- 9.2 Quaternary Spirocenter -- 9.2.1 Copper-Assisted Methodologies -- 9.2.2 Gold-Assisted Methodologies -- 9.2.3 Palladium-Assisted Methodologies -- 9.2.4 Rhodium-Assisted Methodologies -- 9.2.5 Platinum-Assisted Methodologies -- 9.3 α-Heteroatom-Substituted Spirocenter -- 9.3.1 Zinc-, Magnesium-, and Copper-Assisted Methodologies -- 9.3.2 Titanium-Assisted Methodologies -- 9.3.3 Gold- and Platinum-Assisted Methodologies -- 9.3.4 Palladium-Assisted Methodologies -- 9.3.5 Rhodium-Assisted Methodologies -- 9.4 α,α'-Diheteroatom-Substituted Spirocenter -- 9.5 Conclusion and Outlook -- References -- Chapter 10 Organocatalyzed Methodologies -- 10.1 Introduction -- 10.2 Enantioselective Synthesis of All-Carbon Spirocenters -- 10.2.1 Organocatalytic Enantioselective Methodologies for the Synthesis of Spirooxindoles -- 10.2.2 Other Spirocycles -- 10.3 Enantioselective Synthesis Spirocenters with at Least One Heteroatom -- 10.3.1 Synthesis of Spirooxindoles -- 10.3.2 Synthesis of Other Spirocycles -- 10.4 Conclusion and Outlook -- References -- Part IV Stereoselective Synthesis of Acyclic Compounds -- Chapter 11 Metal-Catalyzed Methodologies -- 11.1 Introduction -- 11.2 Anion Relay Approach -- 11.3 Mannich Reaction -- 11.3.1 Diastereoselective Approach -- 11.3.2 Enantioselective Approach -- 11.4 Reactions Involving Isonitriles -- 11.4.1 Diastereoselective Passerini Reaction -- 11.4.2 Enantioselective Passerini Reaction -- 11.4.3 Diastereoselective Ugi Reaction -- 11.5 1,2-Addition-Type Processes -- 11.5.1 Diastereoselective Approach -- 11.5.2 Enantioselective Approach -- 11.6 Michael-Type Processes -- 11.6.1 Diastereoselective Approach -- 11.6.2 Enantioselective Approach -- 11.7 Summary and Outlook -- References -- Chapter 12 Organocatalyzed Methodologies -- 12.1 Introduction -- 12.2 Aminocatalysis. , 12.2.1 Enamine-Enamine Activation -- 12.2.2 Iminium-Enamine Activation -- 12.3 N-Heterocyclic Carbene (NHC) Activation -- 12.4 H-Bonding Activation -- 12.5 Phase-Transfer Catalysis -- 12.6 Summary and Outlook -- References -- Part V Multiple Bond-Forming Transformations: Synthetic Applications -- Chapter 13 MBFTs for the Total Synthesis of Natural Products -- 13.1 Introduction -- 13.2 Anionic-Initiated MBFTs -- 13.3 Cationic-Initiated MBFTs -- 13.4 Radical-Mediated MBFTs -- 13.5 Pericyclic MBFTs -- 13.6 Transition-Metal-Catalyzed MBFTs -- 13.7 Summary and Outlook -- References -- Chapter 14 Synthesis of Biologically Relevant Molecules -- 14.1 Introduction -- 14.2 Organocatalyzed MBFTs for BRMs -- 14.3 Multicomponent MBFTs for BRMs -- 14.4 Palladium-Catalyzed MBFTs for BRMs -- 14.5 Conclusion and Outlook -- References -- Chapter 15 Industrial Applications of Multiple Bond-Forming Transformations (MBFTs) -- 15.1 Introduction -- 15.2 Applications of MBFTs -- 15.2.1 Xylocaine -- 15.2.2 Almorexant -- 15.2.3 (-)-Oseltamivir (Tamiflu®) -- 15.2.4 Telaprevir (Incivek®) -- 15.2.5 Ezetimibe (Zetia®) -- 15.2.6 Crixivan (Indinavir®) -- 15.2.7 Oxytocine Antagonists: Retosiban and Epelsiban -- 15.2.8 Praziquantel (Biltricide®) -- 15.3 Summary and Outlook -- References -- Index -- EULA.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of medicinal chemistry 17 (1974), S. 1225-1227 
    ISSN: 1520-4804
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 101 (1979), S. 5654-5659 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1520-6904
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 441 (2006), S. 861-863 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Efficient and elegant syntheses of complex organic molecules with multiple stereogenic centres continue to be important in both academic and industrial laboratories. In particular, catalytic asymmetric multi-component ‘domino’ reactions, used during total syntheses of natural products and ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1434-193X
    Keywords: Asymmetric synthesis ; Nucleophilic formylation ; Addition reactions ; Lactones ; Formyl anion equivalent ; Domino reactions ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: ---An efficient asymmetric synthesis of α-substituted β-formyl δ-lactones 5 (de ≥ 98%, ee = 80-95%) and 4-substituted furofuran lactones 6 (de ≥ 98%, ee = 80-〉98%) in acceptable overall yields is reported. Key steps of the new procedure are an asymmetric Michael addition of formaldehyde SAMP-hydrazone (1) to 5,6-dihydro-2H-pyran-2-one (2) under neutral conditions, followed by trans-selective α-alkylation and subsequent cleavage of the auxiliary by ozonolysis or a hydrolytic domino reaction protocol, respectively. The absolute configurations given for the title compounds are based on three X-ray structure analyses and NOE measurements.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Berichte der deutschen chemischen Gesellschaft 1998 (1998), S. 913-919 
    ISSN: 1434-1948
    Keywords: Chiral carbenes ; Carbene complexes ; Rhodium complexes ; Axial chirality ; Asymmetric hydrosilylation ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Deprotonation of chiral triazolium salts 1 and reaction of the resulting nucleophilic carbenes with [(COD)RhCl]2 or [(NBD)RhCl]2 afforded square-planar complexes 2-6 in yields of 65-95%. The complexes contain an axis of chirality and a diastereomeric excess of up to 97% was achieved. The relative and absolute configurations of these complexes were determined by NMR spectroscopic investigations and X-ray structure analysis. The application of the rhodium(COD) complexes as catalysts in an asymmetric hydrosilylation reaction has been examined, resulting in enantiomeric excesses of up to 44%. Similar results were achieved for aromatic and aliphatic ketones and a nonlinear temperature effect (principle of isoinversion) was observed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...