GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Mellado, Carla; Chaparro, Oscar R; Duarte, Cristian; Villanueva, Paola A; Ortiz, Alejandro; Valdivia, Nelson; Torres, Rodrigo; Navarro, Jorge M (2019): Ocean acidification exacerbates the effects of paralytic shellfish toxins on the fitness of the edible mussel Mytilus chilensis. Science of the Total Environment, 653, 455-464, https://doi.org/10.1016/j.scitotenv.2018.10.399
    Publication Date: 2024-03-15
    Description: High latitudes are considered particularly vulnerable to ocean acidification, since they are naturally low in carbonate ions. The edible mussel Mytilus chilensis is a common calcifier inhabiting marine ecosystems of the southern Chile, where culturing of this species is concentrated and where algal blooms produced by the toxic dinoflagellate A. catenella are becoming more frequent. Juvenile Mytilus chilensis were exposed to experimental conditions simulating two environmental phenomena: pCO2 increase and the presence of paralytic shellfish toxins (PST) produced by the toxic dinoflagellate Alexandrium catenella. Individuals were exposed to two levels of pCO2: 380 μatm (control condition) and 1000 μatm (future conditions) over a period of 39 days (acclimation), followed by another period of 40 days exposure to a combination of pCO2 and PST. Both factors significantly affected most of the physiological variables measured (feeding, metabolism and scope for growth). However, these effects greatly varied over time, which can be explained by the high individual variability described for mussels exposed to different environmental conditions. Absorption efficiency was not affected by the independent effect of the toxic diet; however, the diet and pCO2 interaction affected it significantly. The inhibition of the physiological processes related with energy acquisition by diets containing PST, may negatively impact mussel fitness, which could have important consequences for both wild and cultured mussel populations, and thus, for socioeconomic development in southern Chile.
    Keywords: Absorption efficiency; Absorption rate; Alkalinity, total; Alkalinity, total, standard deviation; Ammonia excretion; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Behaviour; Benthic animals; Benthos; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calcite saturation state, standard deviation; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Clearance rate; Coast and continental shelf; Diet; EXP; Experiment; Experiment duration; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Huelmo_Bay; Laboratory experiment; Mollusca; Mytilus chilensis; OA-ICC; Ocean Acidification International Coordination Centre; Organic toxins; Other metabolic rates; Oxygen uptake rate; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Potentiometric; Potentiometric titration; Registration number of species; Respiration; Salinity; Salinity, standard deviation; Scope for growth; Single species; South Pacific; Species; Temperate; Temperature, water; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 3700 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-20
    Description: We assess the role of direct and indirect effects of coastal environmental drivers (including the parameters of the carbonate system) on energy expenditure (MR) and body mass (M) of the intertidal mussel, Perumytilus purpuratus, across 10 populations distributed over 2800 km along the Southern Eastern Pacific (SEP) coast. We find biogeographic and local variation in carbonate system variables mediates the effects of latitude and temperature on metabolic rate allometry along the SEP coast. Also, the fitted Piecewise Structural Equation models (PSEM) have greater predictive ability (conditional R2 = 0.95) relative to the allometric scaling model (R2 = 0.35). The largest standardized coefficients for MR and M were determined by the influence of temperature and latitude, followed by pCO2, pH, total alkalinity, and salinity. Thus, physiological diversity of P. purpuratus along the SEP coast emerges as the result of direct and indirect effects of biogeographic and local environmental variables.
    Keywords: Alkalinity, total; Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Biogeographical province; Body length; Buoyant mass; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Category; Coast and continental shelf; Field observation; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Height; LATITUDE; LONGITUDE; Mass; Metabolic rate of oxygen; Metabolic rate of oxygen, per animal mass; Mollusca; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Perumytilus purpuratus; pH; Respiration; Salinity; Shell, mass; Single species; Site; South Pacific; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Temperate; Temperature; Temperature, water; Tropical; Type; Upwelling; Width
    Type: Dataset
    Format: text/tab-separated-values, 9249 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Navarro, Jorge M; Torres, Rodrigo; Acuña, Karin; Duarte, Cristian; Manríquez, Patricio H; Lardies, Marco A; Lagos, Nelson A; Vargas, Cristian A; Aguilera, Victor M (2013): Impact of medium-term exposure to elevated pCO2 levels on the physiological energetics of the mussel Mytilus chilensis. Chemosphere, 90(3), 1242-1248, https://doi.org/10.1016/j.chemosphere.2012.09.063
    Publication Date: 2024-03-15
    Description: This study evaluated the impact of medium-term exposure to elevated pCO2 levels (750-1200 ppm) on the physiological processes of juvenile Mytilus chilensis mussels over a period of 70 d in a mesocosm system. Three equilibration tanks filled with filtered seawater were adjusted to three pCO2 levels: 380 (control), 750 and 1200 ppm by bubbling air or an air-CO2 mixture through the water. For the control, atmospheric air (with aprox. 380 ppm CO2) was bubbled into the tank; for the 750 and 1200 ppm treatments, dry air and pure CO2 were blended to each target concentration using mass flow controllers for air and CO2. No impact on feeding activity was observed at the beginning of the experiment, but a significant reduction in clearance rate was observed after 35 d of exposure to highly acidified seawater. Absorption rate and absorption efficiency were reduced at high pCO2 levels. In addition, oxygen uptake fell significantly under these conditions, indicating a metabolic depression. These physiological responses of the mussels resulted in a significant reduction of energy available for growth (scope for growth) with important consequences for the aquaculture of this species during medium-term exposure to acid conditions. The results of this study clearly indicate that high pCO2 levels in the seawater have a negative effect on the health of M. chilensis. Therefore, the predicted acidification of seawater associated with global climate change could be harmful to this ecologically and commercially important mussel.
    Keywords: Absorption efficiency; Absorption efficiency, standard error; Absorption rate; Absorption rate, standard error; Alkalinity, total; Alkalinity, total, standard error; Ammonia excretion, standard error; Ammonia excretion per individual; Animalia; Aragonite saturation state; Aragonite saturation state, standard error; Behaviour; Benthic animals; Benthos; Bicarbonate ion; Calcite saturation state; Calcite saturation state, standard error; Calculated; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate ion, standard error; Carbonate system computation flag; Carbon dioxide; Clearance rate, standard error; Clearance rate per individual; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Ingestion rate; Ingestion rate, standard error; Laboratory experiment; Mollusca; Mytilus chilensis; OA-ICC; Ocean Acidification International Coordination Centre; Other metabolic rates; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; pH; pH, standard error; Potentiometric; Potentiometric titration; Respiration; Respiration rate, oxygen, per individual; Respiration rate, oxygen, standard error; Salinity; Salinity, standard error; Scope for growth; Scope for growth, standard error; Single species; South Pacific; Species; Temperate; Temperature, water; Temperature, water, standard error; Treatment; Yaldad_Bay
    Type: Dataset
    Format: text/tab-separated-values, 132 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Lagos, Nelson A; Benítez, Samanta; Duarte, Cristian; Lardies, Marco A; Broitman, Bernardo R; Tapia, Christian; Tapia, Pamela; Widdicombe, Steve; Vargas, Cristian A (2016): Effects of temperature and ocean acidification on shell characteristics of Argopecten purpuratus: implications for scallop aquaculture in an upwelling-influenced area. Aquaculture Environment Interactions, 8, 357-370, https://doi.org/10.3354/aei00183
    Publication Date: 2024-03-15
    Description: Coastal upwelling regions already constitute hot spots of ocean acidification as naturally acidified waters are brought to the surface. This effect could be exacerbated by ocean acidification and warming, both caused by rising concentrations of atmospheric CO2. Along the Chilean coast, upwelling supports highly productive fisheries and aquaculture activities. However, during recent years, there has been a documented decline in the national production of the native scallop Argopecten purpuratus. We assessed the combined effects of temperature and pCO2-driven ocean acidification on the growth rates and shell characteristics of this species farmed under the natural influence of upwelling waters occurring in northern Chile (30°S, Tongoy Bay). The experimental scenario representing current conditions (14 °C, pH 8.0) were typical of natural values recorded in Tongoy Bay, whilst conditions representing the low pH scenario were typical of an adjacent upwelling area (pH 7.6). Shell thickness, weight, and biomass were reduced under low pH (pH 7.7) and increased temperature (18 °C) conditions. At ambient temperature (14 °C) and low pH, scallops showed increased shell dissolution and low growth rates. However, elevated temperatures ameliorated the impacts of low pH, as evidenced by growth rates in both pH treatments at the higher temperature treatment that were not significantly different from the control treatment. The impact of low pH at current temperature on scallop growth suggests that the upwelling could increase the time required for scallops to reach marketable size. Mortality of farmed scallops is discussed in relation to our observations of multiple environmental stressors in this upwelling-influenced area.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Argopecten purpuratus; Benthic animals; Benthos; Bicarbonate ion; Biomass, standard error; Biomass, wet mass; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcification rate; Calcification rate, standard error; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Dissolution rate; Dissolution rate, standard error; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Growth rate, standard error; Laboratory experiment; Mollusca; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Potentiometric; Potentiometric titration; Registration number of species; Salinity; Salinity, standard deviation; Shell, dry mass; Shell, mass, standard error; Shell thickness; Single species; South Atlantic; Species; Temperate; Temperature; Temperature, water; Temperature, water, standard deviation; Thickness, standard error; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 184 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...