GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Materialart
Sprache
Erscheinungszeitraum
  • 1
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 83, No. 24 ( 2017-12-15)
    Kurzfassung: The ability to hydrolyze microcrystalline cellulose is an uncommon feature in the microbial world, but it can be exploited for conversion of lignocellulosic feedstocks into biobased fuels and chemicals. Understanding the physiological and biochemical mechanisms by which microorganisms deconstruct cellulosic material is key to achieving this objective. The glucan degradation locus (GDL) in the genomes of extremely thermophilic Caldicellulosiruptor species encodes polysaccharide lyases (PLs), unique cellulose binding proteins (tāpirins), and putative posttranslational modifying enzymes, in addition to multidomain, multifunctional glycoside hydrolases (GHs), thereby representing an alternative paradigm for plant biomass degradation compared to fungal or cellulosomal systems. To examine the individual and collective in vivo roles of the glycolytic enzymes, the six GH genes in the GDL of Caldicellulosiruptor bescii were systematically deleted, and the extents to which the resulting mutant strains could solubilize microcrystalline cellulose (Avicel) and plant biomass (switchgrass or poplar) were examined. Three of the GDL enzymes, Athe_1867 (CelA) (GH9-CBM3-CBM3-CBM3-GH48), Athe_1859 (GH5-CBM3-CBM3-GH44), and Athe_1857 (GH10-CBM3-CBM3-GH48), acted synergistically in vivo and accounted for 92% of naked microcrystalline cellulose (Avicel) degradation. However, the relative importance of the GDL GHs varied for the plant biomass substrates tested. Furthermore, mixed cultures of mutant strains showed that switchgrass solubilization depended on the secretome-bound enzymes collectively produced by the culture, not on the specific strain from which they came. These results demonstrate that certain GDL GHs are primarily responsible for the degradation of microcrystalline cellulose-containing substrates by C. bescii and provide new insights into the workings of a novel microbial mechanism for lignocellulose utilization. IMPORTANCE The efficient and extensive degradation of complex polysaccharides in lignocellulosic biomass, particularly microcrystalline cellulose, remains a major barrier to its use as a renewable feedstock for the production of fuels and chemicals. Extremely thermophilic bacteria from the genus Caldicellulosiruptor rapidly degrade plant biomass to fermentable sugars at temperatures of 70 to 78°C, although the specific mechanism by which this occurs is not clear. Previous comparative genomic studies identified a genomic locus found only in certain Caldicellulosiruptor species that was hypothesized to be mainly responsible for microcrystalline cellulose degradation. By systematically deleting genes in this locus in Caldicellulosiruptor bescii , the nuanced, substrate-specific in vivo roles of glycolytic enzymes in deconstructing crystalline cellulose and plant biomasses could be discerned. The results here point to synergism of three multidomain cellulases in C. bescii , working in conjunction with the aggregate secreted enzyme inventory, as the key to the plant biomass degradation ability of this extreme thermophile.
    Materialart: Online-Ressource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Sprache: Englisch
    Verlag: American Society for Microbiology
    Publikationsdatum: 2017
    ZDB Id: 223011-2
    ZDB Id: 1478346-0
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    American Society for Microbiology ; 2021
    In:  Applied and Environmental Microbiology Vol. 87, No. 3 ( 2021-01-15)
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 87, No. 3 ( 2021-01-15)
    Kurzfassung: Iron is an essential micronutrient for life. In mammals, dietary iron is absorbed primarily in the small intestine. Currently, the impacts of dietary iron on the taxonomic structure and function of the gut microbiome and reciprocal effects on the animal host are not well understood. Here, we establish a mouse model of low-iron challenge in which intestinal biomarkers and reduced fecal iron reveal iron stress while serum iron and mouse behavioral markers indicate maintenance of iron homeostasis. We show that the diversity of the gut microbiome in conventional C57BL/6 mice changes dramatically during 2 weeks on a low-iron diet. We also show the effects of a low-iron diet on microbiome diversity are long lasting and not easily recovered when iron is returned to the diet. Finally, after optimizing taxon association methods, we show that some bacteria are unable to fully recover after the low-iron challenge and appear to be extirpated from the gut entirely. In particular, operational taxonomic units (OTUs) from the Prevotellaceae and Porphyromonadaceae families and Bacteroidales order are highly sensitive to low-iron conditions, while other seemingly insensitive OTUs recover. These results provide new insights into the iron requirements of gut microbiome members and add to the growing understanding of mammalian iron cycling. IMPORTANCE All cells need iron. Both too much and too little iron lead to diseases and unwanted outcomes. Although the impact of dietary iron on human cells and tissues has been well studied, there is currently a lack of understanding about how different levels of iron influence the abundant and diverse members of the human microbiome. This study develops a well-characterized mouse model for studying low-iron levels and identifies key groups of bacteria that are most affected. We found that the microbiome undergoes large changes when iron is removed from the diet but that many individual bacteria are able to rebound when iron levels are changed back to normal. That said, a select few members, referred to as iron-sensitive bacteria, seem to be lost. This study begins to identify individual members of the mammalian microbiome most affected by changes in dietary iron levels.
    Materialart: Online-Ressource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Sprache: Englisch
    Verlag: American Society for Microbiology
    Publikationsdatum: 2021
    ZDB Id: 223011-2
    ZDB Id: 1478346-0
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 86, No. 11 ( 2020-05-19)
    Kurzfassung: The structure and function of fungal communities in the coffee rhizosphere are influenced by crop environment. Because coffee can be grown along a management continuum from conventional application of pesticides and fertilizers in full sun to organic management in a shaded understory, we used coffee fields to hold host constant while comparing rhizosphere fungal communities under markedly different environmental conditions with regard to shade and inputs. We characterized the shade and soil environment in 25 fields under conventional, organic, or transitional management in two regions of Costa Rica. We amplified the internal transcribed spacer 2 (ITS2) region of fungal DNA from coffee roots in these fields and characterized the rhizosphere fungal community via high-throughput sequencing. Sequences were assigned to guilds to determine differences in functional diversity and trophic structure among coffee field environments. Organic fields had more shade, a greater richness of shade tree species, and more leaf litter and were less acidic, with lower soil nitrate availability and higher soil copper, calcium, and magnesium availability than conventionally managed fields, although differences between organic and conventionally managed fields in shade and calcium and magnesium availability depended on region. Differences in richness and community composition of rhizosphere fungi between organic and conventionally managed fields were also correlated with shade, soil acidity, and nitrate and copper availability. Trophic structure differed with coffee field management. Saprotrophs, plant pathogens, and mycoparasites were more diverse, and plant pathogens were more abundant, in organic than in conventionally managed fields, while saprotroph-plant pathogens were more abundant in conventionally managed fields. These differences reflected environmental differences and depended on region. IMPORTANCE Rhizosphere fungi play key roles in ecosystems as nutrient cyclers, pathogens, and mutualists, yet little is currently known about which environmental factors and how agricultural management may influence rhizosphere fungal communities and their functional diversity. This field study of the coffee agroecosystem suggests that organic management not only fosters a greater overall diversity of fungi, but it also maintains a greater richness of saprotrophic, plant-pathogenic, and mycoparasitic fungi that has implications for the efficiency of nutrient cycling and regulation of plant pathogen populations in agricultural systems. As well as influencing community composition and richness of rhizosphere fungi, shade management and use of fungicides and synthetic fertilizers altered the trophic structure of the coffee agroecosystem.
    Materialart: Online-Ressource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Sprache: Englisch
    Verlag: American Society for Microbiology
    Publikationsdatum: 2020
    ZDB Id: 223011-2
    ZDB Id: 1478346-0
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 84, No. 11 ( 2018-06)
    Kurzfassung: The Cuatro Ciénegas Basin (CCB) is located in the Chihuahuan desert in the Mexican state of Coahuila; it has been characterized as a site with high biological diversity despite its extreme oligotrophic conditions. It has the greatest number of endemic species in North America, containing abundant living microbialites (including stromatolites and microbial mats) and diverse microbial communities. With the hypothesis that this high biodiversity and the geographic structure should be reflected in the virome, the viral communities in 11 different locations of three drainage systems, Churince, La Becerra, and Pozas Rojas, and in the intestinal contents of 3 different fish species, were analyzed for both eukaryotic and prokaryotic RNA and DNA viruses using next-generation sequencing methods. Double-stranded DNA (dsDNA) virus families were the most abundant (72.5% of reads), followed by single-stranded DNA (ssDNA) viruses (2.9%) and ssRNA and dsRNA virus families (0.5%). Thirteen families had dsDNA genomes, five had ssDNA, three had dsRNA, and 16 had ssRNA. A highly diverse viral community was found, with an ample range of hosts and a strong geographical structure, with very even distributions and signals of endemicity in the phylogenetic trees from several different virus families. The majority of viruses found were bacteriophages but eukaryotic viruses were also frequent, and the large diversity of viruses related to algae were a surprise, since algae are not evident in the previously analyzed aquatic systems of this ecosystem. Animal viruses were also frequently found, showing the large diversity of aquatic animals in this oasis, where plants, protozoa, and archaea are rare. IMPORTANCE In this study, we tested whether the high biodiversity and geographic structure of CCB is reflected in its virome. CCB is an extraordinarily biodiverse oasis in the Chihuahuan desert, where a previous virome study suggested that viruses had followed the marine ancestry of the marine bacteria and, as a result of their long isolation, became endemic to the site. In this study, which includes a larger sequencing coverage and water samples from other sites within the valley, we confirmed the high virus biodiversity and uniqueness as well as the strong biogeographical diversification of the CCB. In addition, we also analyzed fish intestinal contents, finding that each fish species eats different prey and, as a result, presents different viral compositions even if they coexist in the same pond. These facts highlight the high and novel virus diversity of CCB and its “lost world” status.
    Materialart: Online-Ressource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Sprache: Englisch
    Verlag: American Society for Microbiology
    Publikationsdatum: 2018
    ZDB Id: 223011-2
    ZDB Id: 1478346-0
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 86, No. 7 ( 2020-03-18)
    Kurzfassung: A prominent feature of lactic acid bacteria (LAB) is their ability to inhibit growth of spoilage organisms in food, but hitherto research efforts to establish the mechanisms underlying bioactivity focused on the production of antimicrobial compounds by LAB. We show, in this study, that competitive exclusion, i.e., competition for a limited resource by different organisms, is a major mechanism of fungal growth inhibition by lactobacilli in fermented dairy products. The depletion of the essential trace element manganese by two Lactobacillus species was uncovered as the main mechanism for growth inhibition of dairy spoilage yeast and molds. A manganese transporter (MntH1), representing one of the highest expressed gene products in both lactobacilli, facilitates the exhaustive manganese scavenging. Expression of the mntH1 gene was found to be strain dependent, affected by species coculturing and the growth phase. Further, deletion of the mntH1 gene in one of the strains resulted in a loss of bioactivity, proving this gene to be important for manganese depletion. The presence of an mntH gene displayed a distinct phylogenetic pattern within the Lactobacillus genus. Moreover, assaying the bioprotective ability in fermented milk of selected lactobacilli from 10 major phylogenetic groups identified a correlation between the presence of mntH and bioprotective activity. Thus, manganese scavenging emerges as a common trait within the Lactobacillus genus, but differences in expression result in some strains showing more bioprotective effect than others. In summary, competitive exclusion through ion depletion is herein reported as a novel mechanism in LAB to delay the growth of spoilage contaminants in dairy products. IMPORTANCE In societies that have food choices, conscious consumers demand natural solutions to keep their food healthy and fresh during storage, simultaneously reducing food waste. The use of “good bacteria” to protect food against spoilage organisms has a long, successful history, even though the molecular mechanisms are not fully understood. In this study, we show that the depletion of free manganese is a major bioprotective mechanism of lactobacilli in dairy products. High manganese uptake and intracellular storage provide a link to the distinct, nonenzymatic, manganese-catalyzed oxidative stress defense mechanism, previously described for certain lactobacilli. The evaluation of representative Lactobacillus species in our study identifies multiple relevant species groups for fungal growth inhibition via manganese depletion. Hence, through the natural mechanism of nutrient depletion, the use of dedicated bioprotective lactobacilli constitutes an attractive alternative to artificial preservation.
    Materialart: Online-Ressource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Sprache: Englisch
    Verlag: American Society for Microbiology
    Publikationsdatum: 2020
    ZDB Id: 223011-2
    ZDB Id: 1478346-0
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 87, No. 12 ( 2021-05-26)
    Kurzfassung: The phylogenetic and functional diversities of microbial communities in tropical rainforests and how these differ from those of temperate communities remain poorly described but are directly related to the increased fluxes of greenhouse gases such as nitrous oxide (N 2 O) from the tropics. Toward closing these knowledge gaps, we analyzed replicated shotgun metagenomes representing distinct life zones and an elevation gradient from four locations in the Luquillo Experimental Forest (LEF), Puerto Rico. These soils had a distinct microbial community composition and lower species diversity compared to those of temperate grasslands or agricultural soils. In contrast to the overall distinct community composition, the relative abundances and nucleotide sequences of N 2 O reductases ( nosZ ) were highly similar between tropical forest and temperate soils. However, respiratory NO reductase ( norB ) was 2-fold more abundant in the tropical soils, which might be relatable to their greater N 2 O emissions. Nitrogen fixation ( nifH ) also showed higher relative abundance in rainforest than in temperate soils, i.e., 20% versus 0.1 to 0.3% of bacterial genomes in each soil type harbored the gene, respectively. Finally, unlike temperate soils, LEF soils showed little stratification with depth in the first 0 to 30 cm, with ∼45% of community composition differences explained solely by location. Collectively, these results advance our understanding of spatial diversity and metabolic repertoire of tropical rainforest soil communities and should facilitate future ecological studies of these ecosystems. IMPORTANCE Tropical rainforests are the largest terrestrial sinks of atmospheric CO 2 and the largest natural source of N 2 O emissions, two greenhouse gases that are critical for the climate. The microbial communities of rainforest soils that directly or indirectly, through affecting plant growth, contribute to these fluxes remain poorly described by cultured-independent methods. To close this knowledge gap, the present study applied shotgun metagenomics to samples selected from three distinct life zones within the Puerto Rico rainforest. The results advance our understanding of microbial community diversity in rainforest soils and should facilitate future studies of natural or manipulated perturbations of these critical ecosystems.
    Materialart: Online-Ressource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Sprache: Englisch
    Verlag: American Society for Microbiology
    Publikationsdatum: 2021
    ZDB Id: 223011-2
    ZDB Id: 1478346-0
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 85, No. 21 ( 2019-11)
    Kurzfassung: In the context of open science, the availability of research materials is essential for knowledge accumulation and to maximize the impact of scientific research. In microbiology, microbial domain biological resource centers (mBRCs) have long-standing experience in preserving and distributing authenticated microbial strains and genetic materials (e.g., recombinant plasmids and DNA libraries) to support new discoveries and follow-on studies. These culture collections play a central role in the conservation of microbial biodiversity and have expertise in cultivation, characterization, and taxonomy of microorganisms. Information associated with preserved biological resources is recorded in databases and is accessible through online catalogues. Legal expertise developed by mBRCs guarantees end users the traceability and legality of the acquired material, notably with respect to the Nagoya Protocol. However, awareness of the advantages of depositing biological materials in professional repositories remains low, and the necessity of securing strains and genetic resources for future research must be emphasized. This review describes the unique position of mBRCs in microbiology and molecular biology through their history, evolving roles, expertise, services, challenges, and international collaborations. It also calls for an increased deposit of strains and genetic resources, a responsibility shared by scientists, funding agencies, and publishers. Journal policies requesting a deposit during submission of a manuscript represent one of the measures to make more biological materials available to the broader community, hence fully releasing their potential and improving openness and reproducibility in scientific research.
    Materialart: Online-Ressource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Sprache: Englisch
    Verlag: American Society for Microbiology
    Publikationsdatum: 2019
    ZDB Id: 223011-2
    ZDB Id: 1478346-0
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Online-Ressource
    Online-Ressource
    American Society for Microbiology ; 1993
    In:  Applied and Environmental Microbiology Vol. 59, No. 9 ( 1993-09), p. 3062-3069
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 59, No. 9 ( 1993-09), p. 3062-3069
    Kurzfassung: The acetogenic bacterium Clostridium thermoaceticum ATCC 39073 grew at the expense of the two-carbon substrates oxalate and glyoxylate. Other two-carbon substrates (acetaldehyde, acetate, ethanol, ethylene glycol, glycolaldehyde, glycolate, and glyoxal) were not growth supportive. Growth increased linearly with increasing substrate concentrations up to 45 mM oxalate and glyoxylate, and supplemental CO 2 was not required for growth. Oxalate and glyoxylate yielded 4.9 and 9.4 g, respectively, of cell biomass (dry weight) per mol of substrate utilized. Acetate was the major reduced end product recovered from oxalate and glyoxylate cultures. 14 C labeling studies showed that oxalate was subject to decarboxylation, and product analysis indicated that oxalate was utilized by the following reaction: 4 - OOC-COO - + 5H 2 O → CH 3 COO - + 6HCO 3 - + OH - . Oxalate- and glyoxylate-dependent growth produced lower acetate concentrations per unit of cell biomass synthesized than did H 2 -, CO-, methanol-, formate-, O -methyl-, or glucose-dependent growth. Protein profiles of oxalate-grown cells were dissimilar from protein profiles of glyoxylate-, CO-, or formate-grown cells, suggesting induction of new proteins for the utilization of oxalate. C. thermoaceticum DSM 2955 and Clostridium thermoautotrophicum JW 701/3 also grew at the expense of oxalate and glyoxylate. However, oxalate and glyoxylate did not support the growth of C. thermoaceticum OMD (a nonautotrophic strain) or six other species of acetogenic bacteria tested.
    Materialart: Online-Ressource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Sprache: Englisch
    Verlag: American Society for Microbiology
    Publikationsdatum: 1993
    ZDB Id: 223011-2
    ZDB Id: 1478346-0
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Online-Ressource
    Online-Ressource
    American Society for Microbiology ; 2020
    In:  Applied and Environmental Microbiology Vol. 86, No. 8 ( 2020-04)
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 86, No. 8 ( 2020-04)
    Kurzfassung: Beneficial gut microbes can facilitate insect growth on diverse diets. The omnivorous American cockroach, Periplaneta americana (Insecta: Blattodea), thrives on a diet rich in plant polysaccharides and harbors a species-rich gut microbiota responsive to host diet. Bacteroidetes are among the most abundant taxa in P. americana and other cockroaches, based on cultivation-independent gut community profiling, and these potentially polysaccharolytic bacteria may contribute to host diet processing. Eleven Bacteroidetes isolates were cultivated from P. americana digestive tracts, and phylogenomic analyses suggest that they were new Bacteroides , Dysgonomonas , Paludibacter , and Parabacteroides species distinct from those previously isolated from other insects, humans, and environmental sources. In addition, complete genomes were generated for each isolate, and polysaccharide utilization loci (PULs) and several non-PUL-associated carbohydrate-active enzyme (CAZyme)-coding genes that putatively target starch, pectin, and/or cellulose were annotated in each of the isolate genomes. Type IX secretion system (T9SS)- and CAZyme-coding genes tagged with the corresponding T9SS recognition and export C-terminal domain were observed in some isolates, suggesting that these CAZymes were deployed via non-PUL outer membrane translocons. Additionally, single-substrate growth and enzymatic assays confirmed genomic predictions that a subset of the Bacteroides and Dysgonomonas isolates could degrade starch, pectin, and/or cellulose and grow in the presence of these substrates as a single sugar source. Plant polysaccharides enrich P. americana diets, and many of these gut isolates are well equipped to exploit host dietary inputs and potentially contribute to gut community and host nutrient accessibility. IMPORTANCE Gut microbes are increasingly being recognized as critical contributors to nutrient accessibility in animals. The globally distributed omnivorous American cockroach ( Periplaneta americana ) harbors many bacterial phyla (e.g., Bacteroidetes ) that are abundant in vertebrates. P. americana thrives on a highly diverse plant-enriched diet, making this insect a rich potential source of uncharacterized polysaccharolytic bacteria. We have cultivated, completely sequenced, and functionally characterized several novel Bacteroidetes species that are endemic to the P. americana gut, and many of these isolates can degrade simple and complex polysaccharides. Cultivation and genomic characterization of these Bacteroidetes isolates further enable deeper insight into how these taxa participate in polysaccharide metabolism and, more broadly, how they affect animal health and development.
    Materialart: Online-Ressource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Sprache: Englisch
    Verlag: American Society for Microbiology
    Publikationsdatum: 2020
    ZDB Id: 223011-2
    ZDB Id: 1478346-0
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 85, No. 16 ( 2019-08-15)
    Kurzfassung: Two new modified Bacillus thuringiensis ( Bt ) proteins, Cry1Da_7 and Cry1B.868, with activity against fall armyworms (FAW), Spodoptera frugiperda (J.E. Smith), were evaluated for their potential to bind new insect receptors compared to proteins currently deployed as plant-incorporated protectants (PIPs) in row crops. Results from resistant insect bioassays, disabled insecticidal protein (DIP) bioassays, and cell-based assays using insect cells expressing individual receptors demonstrate that receptor utilizations of the newly modified Cry1Da_7 and Cry1B.868 proteins are distinct from each other and from those of commercially available Bt proteins such as Cry1F, Cry1A.105, Cry2Ab, and Vip3A. Accordingly, these two proteins target different insect proteins in FAW midgut cells and when pyramided together should provide durability in the field against this economically important pest. IMPORTANCE There is increased concern with the development of resistance to insecticidal proteins currently expressed in crop plants, especially against high-resistance-risk pests such as fall armyworm (FAW), Spodoptera frugiperda , a maize pest that already has developed resistance to Bacillus thuringiensis ( Bt ) proteins such as Cry1F. Lepidopteran-specific proteins that bind new insect receptors will be critical in managing current Cry1F-resistant FAW and delaying future resistance development. Results from resistant insect assays, disabled insecticidal protein (DIP) bioassays, and cell-based assays using insect cells expressing individual receptors demonstrate that target receptors of the Cry1Da_7 and Cry1B.868 proteins are different from each other and from those of commercially available Bt proteins such as Cry1F, Cry1A.105, Cry2Ab, and Vip3A. Therefore, pyramiding these two new proteins in maize will provide durable control of this economically important pest in production agriculture.
    Materialart: Online-Ressource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Sprache: Englisch
    Verlag: American Society for Microbiology
    Publikationsdatum: 2019
    ZDB Id: 223011-2
    ZDB Id: 1478346-0
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...