GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The toxicity of heavy metals on photosystem 2 photochemistry, was investigated by monitoring Hill activity, fluorescence, and thermoluminescence properties of photosystem 2 (PS 2) in pea (Pisum sativum L. cv. Bombay) chloroplasts. In Co2+-, Ni2+- or Zn2+-treated chloroplasts 2,6-dichlorophenolindophenol-Hill activity was markedly inhibited. Addition of hydroxylamine which donates electrons close to PS 2 reaction center did not restore the PS 2 activity. Co2+-, Ni2+ or Zn2+ also inhibited PS 2 activity supported by hydroxylamine in tris (hydroxymethyl)aminomethane (Tris)-inactivated chloroplasts. These observations were confirmed by fluorescence transient measurements. This implies that the metal ions inhibit either the reaction center or the components of PS 2 acceptor side. Flash-induced thermoluminescence studies revealed that the S2Q−A charge recombination was insensitive to metal ion addition. The S2Q−B charge recombination, however, was inhibited with increase in the level of Co2+, Ni2+ or Zn2+. The observed sensitivity of S2−B charge recombination in comparison to the stability of S2Q−A recombination suggests that the metal ions inhibit at the level of secondary quinone electron acceptor. QB. We suggest that Co2+, Ni2+ or Zn2+ do not block the electron flow between the primary and secondary quinone electron acceptor, but possibly, directly modify QB site, leading to the loss of PS 2 activity.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5079
    Keywords: acetate metabolism ; ATP demand ; green alga ; photosystem stoichiometry ; redox control ; state transition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effect of acetate metabolism on the light energy distribution between the two photosystems, on the PS II/PS I stoichiometry and on the expression of psbA and psbB and psaA genes was investigated in the green alga, Chlamydobotrys stellata during autotrophic (CO2), mixotrophic (CO2 plus acetate) and photoheterotrophic (only acetate) cultivation. It was observed that acetate assimilation in the glyoxylate cycle resulted in a large drop in the ATP content and a concomitant increase in the NADPH content of the cells. The combined effect of high NADPH concentration and linear electron transport brought about an over-reduction of the inter-photosystem electron transport components. The reduced state of the inter-photosystem components initiated a state 1/state 2 transition of LHC II and a decrease in the PS II/PS I ratio. The PS II/ PS I ratio was reduced because the synthesis of PS II reaction centers was repressed and that of the PS I reaction centers was slightly enhanced by acetate cultivation. The amount of PsbA and PsbB proteins of PS II and the abundance of psbA mRNA decreased. The abundance of PS I PsaA protein and psaAmRNA were only slightly increased. All of the acetate-induced effects were reversible when the cells were transferred back to an acetate-free medium. Our observations demonstrate that the expression of the PS II psbA and psbB and PS I psaA genes is regulated by the redox state of the inter-photosystem components at the transcriptional level. Experiments carried out in the presence of DBMIB which facilitates the reduction of plastoquinone pool indicate that the expression of genes encoding the components of PS II and PS I are controlled by the redox state of a component (cytochrome b/f complex) located behind the plastoquinone pool.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5079
    Keywords: electron transport ; energization ; intact chloroplasts ; in vitro ageing ; thermoluminescence ; ultrastructure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effect of in vitro ageing on the ultrastructure, electron transport, thermoluminescence and flash-induced 515 nm absorbance change of isolated intact (type A) chloroplasts compared with non-intact (types B and C) chloroplasts was studied. When stored in the dark for 18 h at 5°C, the structural characteristics of intact and non-intact chloroplasts were only slightly altered. The most conspicuous difference between the two was in the coupling of the electron transport which was tighter and more stable in intact chloroplasts. Under dark-storage the activity of PS 2* decreased and the -20°C peak of thermoluminescence increased at the expense of the emission at +25°C. These changes were less pronounced in the intact chloroplasts. PS 1 activity and the flash-induced 515 nm absorbance change were not affected by dark-storage. When kept in the light (80 W m-2 (400–700 nm) for 1 h at 5°C), the thylakoid system of chloroplasts rapidly became disorganized. Although the initial activity of electron transport was much higher in intact chloroplasts, after a short period of light-storage the linear electron transport and the electron transport around PS 2 decreased in both types of preparations to the same low level. These changes were accompanied by an overall decrease of the intensity of thermoluminescence. PS 1 was not inhibited by light-storage, while the flash-induced 515 nm absorbance change was virtually abolished both in preparations of intact and non-intact chloroplasts. The data show that in stored chloroplast preparations intactness cannot be estimated reliably either by the FeCy test or by inspection under the electron microscope. These tests should be cross-checked on the level and coupling of the electron transport.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5079
    Keywords: Photoinhibition ; Photosystem II ; quinone-iron complex ; electron paramagnetic resonance (EPR) ; thermoluminescence (TL)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Photosystem II particles were exposed to 800 W m−2 white light at 20 °C under anoxic conditions. The Fo level of fluorescence was considerably enhanced indicating formation of stable-reduced forms of the primary quinone electron acceptor, QA. The Fm level of fluorescence declined only a little. The g=1.9 and g=1.82 EPR forms characteristic of the bicarbonate-bound and bicarbonate-depleted semiquinone-iron complex, QA −Fe2+, respectively, exhibited differential sensitivity against photoinhibition. The large g=1.9 signal was rapidly diminished but the small g=1.82 signal decreased more slowly. The S2-state multiline signal, the oxygen evolution and photooxidation of the high potential form of cytochrome b-559 were inhibited approximately with the same kinetics as the g=1.9 signal. The low potential form of oxidized cytochrome b-559 and Signal IIslow arising from TyrD + decreased considerably slower than the g=1.9 semiquinone-iron signal. The high potential form of oxidized cytochrome b-559 was diminished faster than the low potential form. Photoinhibition of the g=1.9 and g=1.82 forms of QA was accompanied with the appearance and gradual saturation of the spin-polarized triplet signal of P 680. The amplitude of the radical signal from photoreducible pheophytin remained constant during the 3 hour illumination period. In the thermoluminescence glow curves of particles the Q band (S2QA − charge recombination) was almost completely abolished. To the contrary, the C band (TyrD +QA − charge recombination) increased a little upon illumination. The EPR and thermoluminescence observations suggest that the Photosystem II reaction centers can be classified into two groups with different susceptibility against photoinhibition.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1617-4623
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Triazine-resistant mutants have been isolated in photomixotrophic cell cultures of Nicotiana plumbaginifolia. Triazine herbicides inhibit photosynthesis and cause extensive photodestruction of chloroplasts (bleaching) in sensitive plants. Selection was based on the greening ability of the resistant cells in the presence of 10-4 M terbutryn, under normal culture conditions, but in a medium containing a low sugar concentration. In the mutant plants, as compared to wild type, two to three orders of magnitude higher concentrations of triazines resulted in inhibition of photosynthetic electron transport and greening. The resistance was inherited maternally.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...