GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-10-04
    Description: Volcano‐seismic signals such as long‐period events and tremor are important indicators for volcanic activity and unrest. However, their wavefield is complex and characterization and location using traditional seismological instrumentation is often difficult. In 2019 we recorded the full seismic wavefield using a newly developed 3C rotational sensor co‐located with a 3C traditional seismometer on Etna, Italy. We compare the performance of the rotational sensor, the seismometer and the Istituto Nazionale di Geofisica e Vulcanologia‐Osservatorio Etneo (INGV‐OE) seismic network with respect to the analysis of complex volcano‐seismic signals. We create event catalogs for volcano‐tectonic (VT) and long‐period (LP) events combining a STA/LTA algorithm and cross‐correlations. The event detection based on the rotational sensor is as reliable as the seismometer‐based detection. The LP events are dominated by SH‐type waves. Derived SH phase velocities range from 500 to 1,000 m/s for LP events and 300–400 m/s for volcanic tremor. SH‐waves compose the tremor during weak volcanic activity and SH‐ and SV‐waves during sustained strombolian activity. We derive back azimuths using (a) horizontal rotational components and (b) vertical rotation rate and transverse acceleration. The estimated back azimuths are consistent with the INGV‐OE event location for (a) VT events with an epicentral distance larger than 3 km and some closer events, (b) LP events and tremor in the main crater area. Measuring the full wavefield we can reliably analyze the back azimuths, phase velocities and wavefield composition for VT, LP events and tremor in regions that are difficult to access such as volcanoes.
    Description: Plain Language Summary: Traditional seismographs usually include mass and spring systems which measure vibrations constrained to up‐down, north‐south and east‐west directions. We compare the traditional seismometer to a rotational sensor which measures ground rotation around the same three directions. We installed a rotational sensor on Etna volcano in 2019 to test these new sensors in a volcanic environment. We compare the performance of the rotational sensor, a traditional seismometer and the Istituto Nazionale di Geofisica e Vulcanologia‐Osservatorio Etneo (INGV‐OE) seismometer network. We detect two types of a few second long earthquakes and find that the rotational sensor performs as good as the seismometer. We use the rotational sensor to calculate directions of the earthquake locations and find that most directions agree with the INGV‐OE network location and the area of the active craters. We find that for some earthquakes the ground only moved horizontally while for others it also moved up and down. Using a rotational sensor on a volcano we can easily and reliably estimate the ground motion, the speed of the earthquake waves in the ground and understand better how these earthquakes are generated.
    Description: Key Points: We tested the performance of a rotational sensor compared to a seismometer and a seismic network using long‐period (LP), volcano‐tectonic (VT) events and tremor on Etna. LP and VT events are dominated by SH‐ and SV‐waves, respectively. Tremor changed from SH‐ to a mixed wavefield during strombolian eruptions. LP event and tremor back azimuths point to the main craters consistent with the Istituto Nazionale di Geofisica e Vulcanologia location; VT event back azimuths are at times consistent.
    Description: Eurovolc
    Description: Daimler Benz Foundation
    Description: https://doi.org/10.14470/ME7564062119
    Keywords: ddc:551.2
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-07
    Description: Geochemical and geophysical prospecting methods (including measurements of soil heat flux and soil CO2 flux, gravimetry, self-potential and geomagnetism) are used to produce an integrated data set aimed at imaging the migration of fluids in the sub-surface at the Salinelle mud volcanoes, located on the lower southwestern flank of Mt Etna (Sicily, Italy). This area was affected by magmatic eruptions from local volcanic centers between about 48 and 27 ka. Today, only pseudo-volcanic phenomena due to over-pressured multiphase pore fluids there occur. Carbon dioxide of magmatic origin, mixed with biogenic hydrocarbons, warm hypersaline waters and mud, are constantly released at the surface through the main conduits of mud volcanoes, whose activity is characterized by alternation of mild gas bubbling periods and strong paroxysmal phases. The latter produce violent gas eruptions that eject warm water (T ≈ 50° C) to a height up to about 1 m. Surface distribution of the geophysical and geochemical parameters have been investigated to detect the main pathways through which fluids move toward the shallow crust. Integration of geochemical, geophysical and geological maps allowed for the tracing of the fluid flow in the shallowest (a few tens of meters below the surface) part of the local hydrothermal system. Our results showed that the rising of fluids from a deep reservoir is controlled by the main structural and geological features of the area and their temporal and spatial evolution depends on pressure conditions inside the hydrothermal system.
    Description: Published
    Description: PE442
    Description: 7A. Geofisica per il monitoraggio ambientale
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-03-09
    Description: A numerical approach is proposed to evaluate stress and deformation fields induced by hydrothermal fluid circulation and its influence on volcano-flank stability. The numerical computations have been focused on a conceptual model of Vulcano Island, where geophysical, geochemical, and seismic signals have experienced several episodes of remarkable changes likely linked to the hydrothermal activity. We design a range of numerical models of hydrothermal unrest and computed the associated deformation and stress field arising from rock-fluid interaction processes related to the thermoporoelastic response of the medium. The effects of model parameters on deformation and flank stability are explored considering different multilayered crustal structures constrained by seismic tomography and stratigraphy investigations. Our findings highlight the significant role of model parameters on the response of the hydrothermal system and, consequently, on the amplitudes and the timescale of stress and strain fields. Even if no claim is made that the model strictly applies to the crisis episodes at Vulcano, the numerical results are in general agreement with the pattern of monitoring observations, characterized by an enhancing of gas emission and seismic activity without significant ground deformation.The conceptual model points to a pressurization and heating of the shallow hydrothermal system (1–0.25 km bsl) fed by fluid of magmatic origin. However, for the assumed values of model material and source parameters (rate of injection, fluid composition, and temperature), the pressure and temperature changes do not affect significantly the flank stability, which is mainly controlled by the gravitational force.
    Description: Published
    Description: 28
    Description: 4V. Dinamica dei processi pre-eruttivi
    Description: 5V. Dinamica dei processi eruttivi e post-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-09-11
    Description: We have modeled the fast dike intrusion that started on 24 December 2018 at Mount Etna. The intrusion was accompanied by an intense seismicity swarm that also continued the following day. Since previous studies did not detail the overall chain of events in time during the magma ascent, here we propose a combined analytical and FEM modeling of all available continuous deformation data, focusing on the signals over 2 days (24–25 December) when the continuous deformation networks recorded clear variations directly related to the dike ascent. High‐rate GPS enabled obtaining an early and reliable source model. Borehole instruments (strainmeters and tiltmeters) highlighted clear variations, starting about 1 hr before those recorded by GPS, and moreover, made it possible to improve the dike ascent modeling. In particular, our continuous deformation data clearly revealed not one but two dikes and showed how they evolved in time. We inferred one dike that began propagating in the first kilometer above sea level, continued to rise with a maximum opening of 1.9mand increased its horizontal dimension until reaching the ground surface. Soon after, continuous deformation networks revealed a new elongated intrusion in the southern flank, matching the south shifted position of the seismic swarm. This second dike, with a thicker opening of 4.9 m, started from a depth of about −3 km (below sea level) but did not reach the ground surface. This proposed multiparametric modeling of continuous deformation data has therefore enabled disentangling the complexity of the real volcanic processes.
    Description: Published
    Description: e2019JB019117
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-01-18
    Description: For detecting below surface sources of deformation, strain measurements offer a very large advantage (orders of magnitude) in sensitivity over displacement measurements. On active volcanoes an intriguing open challenge is to measure the strain variations caused by the different types of eruptive activity with the highest possible precision in order to obtain advantages on the clear detecting of phenomena, their modeling and understanding. We present the updated main results obtained from the high precision strain recorded by the borehole dilatometer network on Mt. Etna volcano. The instruments, installed from the end of 2011, detected significant changes during different types of eruptive activity: several lava fountains during 2011–2014; two explosive sequences in 2015 and 2016; moderate effusive activity in 2017 and a dike intrusion in 2018. The strain changes provided powerful diagnostic information on the different ongoing processes, and allowed us to add key information on the different eruptive styles and sources. We also highlight how the recorded signals, with the associated modeling and interpretation, provide a powerful contribution to surveillance requirements on an active volcano. This report demonstrates that the borehole dilatometer network represents a useful tool both for the understanding of the volcano processes and for surveillance needs.
    Description: Published
    Description: 357
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Employing both absolute and relative gravimeters, we carried out three hybrid microgravity surveys at Etna volcano between 2007 and 2009. The repeated measurements highlighted the spatio-time evolution of the gravity field associated with the volcanic unrest. We detected a gravity increase attained an amplitude of about 80 µGal on the summit area of the volcano between July 2008 and July 2009. The observed gravity increase could reflect mass accumulations into shallow magma storage system of the volcano located at 1÷2 km below sea level. We present here data and the advantages in using the combined approach of relative and absolute measurements performed at Etna volcano.
    Description: Published
    Description: Saint Petersburg, Russia
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: open
    Keywords: absolute and relative gravity ; Mt Etna volcano ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-19
    Description: Unprecedented ultra-small strain changes (~10 −8 –10 −9 ), preceding and accompanying the 2017 explosive-effusive activity, were revealed by a high precision borehole strainmeter at Etna. No pre- or co-eruptive deformation was detected by the GPS measurements, which often fail to detect ground deformation engendered by short-term small volcanic events due to their limited accuracy (millimetres to few centimetres). Through the analysis and detection of ultra-small strain changes (few tens of nanostrain), revealed by filtering the raw data, a significant time correspondence with the eruptive activity is observed. For the first time, cyclic fast exponential strain changes, preceding the onset of eruptive events, with a timescale of about 2–7 days, were detected. These variations are attributable to the expansion of the shallow magma reservoir, which is replenished with new magma from depth during the inter-eruptive periods. Interpreting the strain changes in terms of pressurization/depressurization of the chamber due to the cyclic influx and withdrawal of magma, allows placing some constraints on the magma recharge volume rate. A Finite Element model has been developed to simulate the temporal evolution of the strain changes generated by the re-pressurization of a spheroidal magma source using a dynamical approach. An average total mass budget of about 1–2 × 10 9 kg, which is in the range of the erupted mass, is estimated to be accumulated within a shallow vertically elongated magma chamber during the inter-eruptive periods. Such evidence demonstrates that the near-real time analysis of strainmeter records is remarkable for its ability to record small transients and highlight recharging phases preceding eruptive activity, which would go undetected with other current methodologies. Under these conditions, the ability to simulate inter-eruptive periods offers an opportunity to estimate the magma recharge rate with important implications for volcano hazard assessment.
    Description: Published
    Description: id 7553
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-04-10
    Description: Motivated by ongoing efforts to understand the nature and the energy potential of geothermal resources, we devise a coupled numerical model (hydrological, thermal, mechanical), which may help in the characterization and monitoring of hydrothermal systems through computational experiments. Hydrothermal areas in volcanic regions arise from a unique combination of geological and hydrological features which regulate the movement of fluids in the vicinity of magmatic sources capable of generating large quantities of steam and hot water. Numerical simulations help in understanding and characterizing rock-fluid interaction processes and the geophysical observations associated with them. Our aim is the quantification of the response of different geophysical observables (i.e., deformation, gravity, and magnetic fields) to hydrothermal activity on the basis of a sound geological framework (e.g., distribution and pathways of the flows, the presence of fractured zones, caprock). A detailed comprehension and quantification of the evolution and dynamics of the geothermal systems and the definition of their internal state through a geophysical modeling approach are essential to identify the key parameters for which the geothermal system may fulfill the requirements to be exploited as a source of energy. For the sake of illustration only, the numerical computations are focused on a conceptual model of the hydrothermal system of Vulcano Island by simulating a generic 1-year unrest and estimating different geophysical changes. We solved (i) the mass and energy balance equations of flow in porous media for temperature, pressure and density changes, (ii) the elastostatic equation for the deformation field and (iii) the Poisson’s equations for gravity and magnetic potential fields. Under the model assumptions, a generic unrest of 1-year engenders on the ground surface low amplitude changes in the investigated geophysical observables, that, being above the accuracies of the modern state-of-the-art instruments, could be traced by continuously running multi-parametric monitoring networks. Devising multidisciplinary and easy-to-use computational experiments enable us to learn how the hydrothermal system responds to unrest and which fingerprints it may leave in the geophysical signals.
    Description: Published
    Description: Article 41
    Description: 1TR. Studi per le Georisorse
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-04-02
    Description: Gravity and height changes, which reflectmagma accumulation in subsurface chambers, are evaluated using analytical and numericalmodels in order to investigate their relationships and temporal evolutions. The analysis focuses mainly on the exploration of the time-dependent response of gravity and height changes to the pressurization of ellipsoidalmagmatic chambers in viscoelasticmedia. Firstly, the validation of the numerical Finite Element results is performed by comparison with analytical solutions,which are devised for a simple spherical source embedded in a homogeneous viscoelastic half-space medium. Then, the effect of several model parameters on time-dependent height and gravity changes is investigated thanks to the flexibility of the numerical method in handling complex configurations. Both homogeneous and viscoelastic shell models reveal significantly different amplitudes in the ratio between gravity and height changes depending on geometry factors and mediumrheology. The results showthat these factors also influence the relaxation characteristic times of the investigated geophysical changes. Overall, these temporal patterns are compatible with time-dependent height and gravity changes observed on Etna volcano during the 1994–1997 inflation period. By modeling the viscoelastic response of a pressurized prolate magmatic source, a general agreement between computed and observed geophysical variations is achieved.
    Description: Published
    Description: 264-277
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-02-27
    Description: We present GEOFIM (GEOphysical Forward/Inverse Modeling), a WebGIS application for integrated interpretation of multiparametric geophysical observations. It has been developed to jointly interpret scalar and vector magnetic data, gravity data, as well as geodetic data, from GPS, tiltmeter, strainmeter and InSAR observations, recorded in active volcanic areas. GEOFIM gathers a library of analytical solutions, which provides an estimate of the geophysical signals due to perturbations in the thermal and stress state of the volcano. The integrated geophysical modeling can be performed by a simple trial and errors forward modeling or by an inversion procedure based on NSGA-II algorithm. The software capability was tested on the multiparametric data set recorded during the 2008-2009 Etna flank eruption onset. The results encourage to exploit this approach to develop a near-real-time warning system for a quantitative model-based assessment of geophysical observations in areas where different parameters are routinely monitored.
    Description: Published
    Description: 120-127
    Description: 4V. Dinamica dei processi pre-eruttivi
    Description: JCR Journal
    Keywords: volcano monitoring ; inverse procedure ; Etna volcano. ; integrated geophysical modelling
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...