GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Materialart
Sprache
Erscheinungszeitraum
  • 1
    In: Climate of the Past, Copernicus GmbH, Vol. 12, No. 3 ( 2016-03-08), p. 595-610
    Kurzfassung: Abstract. Ice cores provide some of the best-dated and most comprehensive proxy records, as they yield a vast and growing array of proxy indicators. Selecting a site for ice core drilling is nonetheless challenging, as the assessment of potential new sites needs to consider a variety of factors. Here, we demonstrate a systematic approach to site selection for a new East Antarctic high-resolution ice core record. Specifically, seven criteria are considered: (1) 2000-year-old ice at 300 m depth; (2) above 1000 m elevation; (3) a minimum accumulation rate of 250 mm years−1 IE (ice equivalent); (4) minimal surface reworking to preserve the deposited climate signal; (5) a site with minimal displacement or elevation change in ice at 300 m depth; (6) a strong teleconnection to midlatitude climate; and (7) an appropriately complementary relationship to the existing Law Dome record (a high-resolution record in East Antarctica). Once assessment of these physical characteristics identified promising regions, logistical considerations (for site access and ice core retrieval) were briefly considered. We use Antarctic surface mass balance syntheses, along with ground-truthing of satellite data by airborne radar surveys to produce all-of-Antarctica maps of surface roughness, age at specified depth, elevation and displacement change, and surface air temperature correlations to pinpoint promising locations. We also use the European Centre for Medium-Range Weather Forecast ERA 20th Century reanalysis (ERA-20C) to ensure that a site complementary to the Law Dome record is selected. We find three promising sites in the Indian Ocean sector of East Antarctica in the coastal zone from Enderby Land to the Ingrid Christensen Coast (50–100° E). Although we focus on East Antarctica for a new ice core site, the methodology is more generally applicable, and we include key parameters for all of Antarctica which may be useful for ice core site selection elsewhere and/or for other purposes.
    Materialart: Online-Ressource
    ISSN: 1814-9332
    Sprache: Englisch
    Verlag: Copernicus GmbH
    Publikationsdatum: 2016
    ZDB Id: 2217985-9
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: Annals of Glaciology, International Glaciological Society, Vol. 39 ( 2004), p. 127-132
    Kurzfassung: Annually dated ice cores from West and East Antarctica provide proxies for past changes in atmospheric circulation over Antarctica and portions of the Southern Ocean, temperature in coastal West and East Antarctica, and the frequency of South Polar penetration of El Niño events. During the period AD 1700–1850, atmospheric circulation over the Antarctic and at least portions of the Southern Hemisphere underwent a mode switch departing from the out-of-phase alternation of multi-decadal long phases of EOF1 and EOF2 modes of the 850 hPa field over the Southern Hemisphere (as defined in the recent record by Thompson and Wallace, 2000; Thompson and Solomon, 2002) that characterizes the remainder of the 700 year long record. From AD 1700 to 1850, lower-tropospheric circulation was replaced by in-phase behavior of the Amundsen Sea Low component of EOF2 and the East Antarctic High component of EOF1. During the first phase of the mode switch, both West and East Antarctic temperatures declined, potentially in response to the increased extent of sea ice surrounding both regions. At the end of the mode switch, West Antarctic coastal temperatures rose and East Antarctic coastal temperatures fell, respectively, to their second highest and lowest of the record. Polar penetration of El Niño events increased during the mode switch. The onset of the AD 1700–1850 mode switch coincides with the extreme state of the Maunder Minimum in solar variability. Late 20th-century West Antarctic coastal temperatures are the highest in the record period, and East Antarctic coastal temperatures close to the lowest. Since AD 1700, extratropical regions of the Southern Hemisphere have experienced significant climate variability coincident with changes in both solar variability and greenhouse gases.
    Materialart: Online-Ressource
    ISSN: 0260-3055 , 1727-5644
    Sprache: Englisch
    Verlag: International Glaciological Society
    Publikationsdatum: 2004
    ZDB Id: 2122400-6
    SSG: 14
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    In: Climate of the Past, Copernicus GmbH, Vol. 13, No. 11 ( 2017-11-17), p. 1609-1634
    Kurzfassung: Abstract. Climate trends in the Antarctic region remain poorly characterized, owing to the brevity and scarcity of direct climate observations and the large magnitude of interannual to decadal-scale climate variability. Here, within the framework of the PAGES Antarctica2k working group, we build an enlarged database of ice core water stable isotope records from Antarctica, consisting of 112 records. We produce both unweighted and weighted isotopic (δ18O) composites and temperature reconstructions since 0 CE, binned at 5- and 10-year resolution, for seven climatically distinct regions covering the Antarctic continent. Following earlier work of the Antarctica2k working group, we also produce composites and reconstructions for the broader regions of East Antarctica, West Antarctica and the whole continent. We use three methods for our temperature reconstructions: (i) a temperature scaling based on the δ18O–temperature relationship output from an ECHAM5-wiso model simulation nudged to ERA-Interim atmospheric reanalyses from 1979 to 2013, and adjusted for the West Antarctic Ice Sheet region to borehole temperature data, (ii) a temperature scaling of the isotopic normalized anomalies to the variance of the regional reanalysis temperature and (iii) a composite-plus-scaling approach used in a previous continent-scale reconstruction of Antarctic temperature since 1 CE but applied to the new Antarctic ice core database. Our new reconstructions confirm a significant cooling trend from 0 to 1900 CE across all Antarctic regions where records extend back into the 1st millennium, with the exception of the Wilkes Land coast and Weddell Sea coast regions. Within this long-term cooling trend from 0 to 1900 CE, we find that the warmest period occurs between 300 and 1000 CE, and the coldest interval occurs from 1200 to 1900 CE. Since 1900 CE, significant warming trends are identified for the West Antarctic Ice Sheet, the Dronning Maud Land coast and the Antarctic Peninsula regions, and these trends are robust across the distribution of records that contribute to the unweighted isotopic composites and also significant in the weighted temperature reconstructions. Only for the Antarctic Peninsula is this most recent century-scale trend unusual in the context of natural variability over the last 2000 years. However, projected warming of the Antarctic continent during the 21st century may soon see significant and unusual warming develop across other parts of the Antarctic continent. The extended Antarctica2k ice core isotope database developed by this working group opens up many avenues for developing a deeper understanding of the response of Antarctic climate to natural and anthropogenic climate forcings. The first long-term quantification of regional climate in Antarctica presented herein is a basis for data–model comparison and assessments of past, present and future driving factors of Antarctic climate.
    Materialart: Online-Ressource
    ISSN: 1814-9332
    Sprache: Englisch
    Verlag: Copernicus GmbH
    Publikationsdatum: 2017
    ZDB Id: 2217985-9
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    In: Climate of the Past, Copernicus GmbH, Vol. 17, No. 5 ( 2021-09-09), p. 1795-1818
    Kurzfassung: Abstract. Paleoclimate archives, such as high-resolution ice core records, provide a means to investigate past climate variability. Until recently, the Law Dome (Dome Summit South site) ice core record remained one of few millennial-length high-resolution coastal records in East Antarctica. A new ice core drilled in 2017/2018 at Mount Brown South, approximately 1000 km west of Law Dome, provides an additional high-resolution record that will likely span the last millennium in the Indian Ocean sector of East Antarctica. Here, we compare snow accumulation rates and sea salt concentrations in the upper portion (∼ 20 m) of three Mount Brown South ice cores and an updated Law Dome record over the period 1975–2016. Annual sea salt concentrations from the Mount Brown South site record preserve a stronger signal for the El Niño–Southern Oscillation (ENSO; austral winter and spring, r = 0.533, p 〈 0.001, Multivariate El Niño Index) compared to a previously defined Law Dome record of summer sea salt concentrations (November–February, r = 0.398, p = 0.010, Southern Oscillation Index). The Mount Brown South site record and Law Dome record preserve inverse signals for the ENSO, possibly due to longitudinal variability in meridional transport in the southern Indian Ocean, although further analysis is needed to confirm this. We suggest that ENSO-related sea surface temperature anomalies in the equatorial Pacific drive atmospheric teleconnections in the southern mid-latitudes. These anomalies are associated with a weakening (strengthening) of regional westerly winds to the north of Mount Brown South that correspond to years of low (high) sea salt deposition at Mount Brown South during La Niña (El Niño) events. The extended Mount Brown South annual sea salt record (when complete) may offer a new proxy record for reconstructions of the ENSO over the recent millennium, along with improved understanding of regional atmospheric variability in the southern Indian Ocean, in addition to that derived from Law Dome.
    Materialart: Online-Ressource
    ISSN: 1814-9332
    Sprache: Englisch
    Verlag: Copernicus GmbH
    Publikationsdatum: 2021
    ZDB Id: 2217985-9
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    In: Earth System Science Data, Copernicus GmbH, Vol. 11, No. 2 ( 2019-04-11), p. 473-492
    Kurzfassung: Abstract. Ice core records of the major atmospheric greenhouse gases (CO2, CH4, N2O) and their isotopologues covering recent centuries provide evidence of biogeochemical variations during the Late Holocene and pre-industrial periods and over the transition to the industrial period. These records come from a number of ice core and firn air sites and have been measured in several laboratories around the world and show common features but also unresolved differences. Here we present revised records, including new measurements, performed at the CSIRO Ice Core Extraction LABoratory (ICELAB) on air samples from ice obtained at the high-accumulation site of Law Dome (East Antarctica). We are motivated by the increasing use of the records by the scientific community and by recent data-handling developments at CSIRO ICELAB. A number of cores and firn air samples have been collected at Law Dome to provide high-resolution records overlapping recent, direct atmospheric observations. The records have been updated through a dynamic link to the calibration scales used in the Global Atmospheric Sampling LABoratory (GASLAB) at CSIRO, which are periodically revised with information from the latest calibration experiments. The gas-age scales have been revised based on new ice-age scales and the information derived from a new version of the CSIRO firn diffusion model. Additionally, the records have been revised with new, rule-based selection criteria and updated corrections for biases associated with the extraction procedure and the effects of gravity and diffusion in the firn. All measurements carried out in ICELAB–GASLAB over the last 25 years are now managed through a database (the ICElab dataBASE or ICEBASE), which provides consistent data management, automatic corrections and selection of measurements, and a web-based user interface for data extraction. We present the new records, discuss their strengths and limitations, and summarise their main features. The records reveal changes in the carbon cycle and atmospheric chemistry over the last 2 millennia, including the major changes of the anthropogenic era and the smaller, mainly natural variations beforehand. They provide the historical data to calibrate and test the next inter-comparison of models used to predict future climate change (Coupled Model Inter-comparison Project – phase 6, CMIP6). The datasets described in this paper, including spline fits, are available at https://doi.org/10.25919/5bfe29ff807fb (Rubino et al., 2019).
    Materialart: Online-Ressource
    ISSN: 1866-3516
    Sprache: Englisch
    Verlag: Copernicus GmbH
    Publikationsdatum: 2019
    ZDB Id: 2475469-9
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    In: Climate of the Past, Copernicus GmbH, Vol. 13, No. 2 ( 2017-02-27), p. 171-184
    Kurzfassung: Abstract. The Law Dome site is ideal for the evaluation of sea ice proxies due to its location near to the Antarctic coast, regular and high accumulation throughout the year, an absence of surface melting or remobilization, and minimal multiyear sea ice. We present records of bromine and iodine concentrations and their enrichment beyond seawater compositions and compare these to satellite observations of first-year sea ice area in the 90–130° E sector of the Wilkes coast. Our findings support the results of previous studies of sea ice variability from Law Dome, indicating that Wilkes coast sea ice area is currently at its lowest level since the start of the 20th century. From the Law Dome DSS1213 firn core, 26 years of monthly deposition data indicate that the period of peak bromine enrichment is during austral spring–summer, from November to February. Results from a traverse along the lee (western) side of Law Dome show low levels of sodium and bromine deposition, with the greatest fluxes in the vicinity of the Law Dome summit. Finally, multidecadal variability in iodine enrichment appears well correlated to bromine enrichment, suggesting a common source of variability that may be related to the Interdecadal Pacific Oscillation (IPO).
    Materialart: Online-Ressource
    ISSN: 1814-9332
    Sprache: Englisch
    Verlag: Copernicus GmbH
    Publikationsdatum: 2017
    ZDB Id: 2217985-9
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    In: Science Advances, American Association for the Advancement of Science (AAAS), Vol. 7, No. 22 ( 2021-05-28)
    Kurzfassung: Fire plays a pivotal role in shaping terrestrial ecosystems and the chemical composition of the atmosphere and thus influences Earth’s climate. The trend and magnitude of fire activity over the past few centuries are controversial, which hinders understanding of preindustrial to present-day aerosol radiative forcing. Here, we present evidence from records of 14 Antarctic ice cores and 1 central Andean ice core, suggesting that historical fire activity in the Southern Hemisphere (SH) exceeded present-day levels. To understand this observation, we use a global fire model to show that overall SH fire emissions could have declined by 30% over the 20th century, possibly because of the rapid expansion of land use for agriculture and animal production in middle to high latitudes. Radiative forcing calculations suggest that the decreasing trend in SH fire emissions over the past century largely compensates for the cooling effect of increasing aerosols from fossil fuel and biofuel sources.
    Materialart: Online-Ressource
    ISSN: 2375-2548
    Sprache: Englisch
    Verlag: American Association for the Advancement of Science (AAAS)
    Publikationsdatum: 2021
    ZDB Id: 2810933-8
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    In: Climate of the Past, Copernicus GmbH, Vol. 19, No. 6 ( 2023-06-07), p. 1125-1152
    Kurzfassung: Abstract. The temperature of the Earth is one of the most important climate parameters. Proxy records of past climate changes, in particular temperature, represent a fundamental tool for exploring internal climate processes and natural climate forcings. Despite the excellent information provided by ice core records in Antarctica, the temperature variability of the past 2000 years is difficult to evaluate from the low-accumulation sites in the Antarctic continent interior. Here we present the results from the Aurora Basin North (ABN) ice core (71∘ S, 111∘ E, 2690 m a.s.l.) in the lower part of the East Antarctic plateau, where accumulation is substantially higher than other ice core drilling sites on the plateau, and provide unprecedented insight into East Antarctic past temperature variability. We reconstructed the temperature of the last 2000 years using two independent methods: the widely used water stable isotopes (δ18O) and by inverse modelling of borehole temperature and past temperature gradients estimated from the inert gas stable isotopes (δ40Ar and δ15N). This second reconstruction is based on three independent measurement types: borehole temperature, firn thickness, and firn temperature gradient. The δ18O temperature reconstruction supports stable temperature conditions within 1 ∘C over the past 2000 years, in agreement with other ice core δ18O records in the region. However, the gas and borehole temperature reconstruction suggests that surface conditions 2 ∘C cooler than average prevailed in the 1000–1400 CE period and supports a 20th century warming of 1 ∘C. A precipitation hiatus during cold periods could explain why water isotope temperature reconstruction underestimates the temperature changes. Both reconstructions arguably record climate in their own way, with a focus on atmospheric and hydrologic cycles for water isotopes, as opposed to surface temperature for gas isotopes and boreholes. This study demonstrates the importance of using a variety of sources for comprehensive paleoclimate reconstructions.
    Materialart: Online-Ressource
    ISSN: 1814-9332
    Sprache: Englisch
    Verlag: Copernicus GmbH
    Publikationsdatum: 2023
    ZDB Id: 2217985-9
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Online-Ressource
    Online-Ressource
    American Meteorological Society ; 2021
    In:  Journal of Climate Vol. 34, No. 3 ( 2021-02), p. 883-899
    In: Journal of Climate, American Meteorological Society, Vol. 34, No. 3 ( 2021-02), p. 883-899
    Kurzfassung: Weather systems in the southern Indian Ocean (SIO) drive synoptic-scale precipitation variability in East Antarctica and southern Australia. Improved understanding of these dynamical linkages is beneficial to diagnose long-term climate changes from climate proxy records as well as informing regional weather and climate forecasts. Self-organizing maps (SOMs) are used to group daily 500-hPa geopotential height (z500; ERA-Interim) anomalies into nine regional synoptic types based on their dominant patterns over the SIO (30°–75°S, 40°–180°E) from January 1979 to October 2018. The pattern anomalies represented include four meridional, three mixed meridional–zonal, one zonal, and one transitional node. The frequency of the meridional nodes shows limited association with the phase of the southern annular mode (SAM), especially during September–November. The zonal and mixed patterns were nevertheless strongly and significantly correlated with SAM, although the regional synoptic representation of SAM+ conditions was not zonally symmetric and was represented by three separate nodes. We recommend consideration of how different synoptic conditions vary the atmospheric representation of SAM+ in any given season in the SIO. These different types of SAM+ mean a hemispheric index fails to capture the regional variability in surface weather conditions that is primarily driven by the synoptic variability rather than the absolute polarity of the SAM.
    Materialart: Online-Ressource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Sprache: Unbekannt
    Verlag: American Meteorological Society
    Publikationsdatum: 2021
    ZDB Id: 246750-1
    ZDB Id: 2021723-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 19, No. 6 ( 2019-03-20), p. 3481-3492
    Kurzfassung: Abstract. The first atmospheric observations of octafluorooxolane (octafluorotetrahydrofuran, c-C4F8O), a persistent greenhouse gas, are reported. In addition, a complementary laboratory study of its most likely atmospheric loss processes, its infrared absorption spectrum, and global warming potential (GWP) are reported. First atmospheric measurements of c-C4F8O are provided from the Cape Grim Air Archive (41∘ S, Tasmania, Australia, 1978–present), supplemented by two firn air samples from Antarctica, in situ measurements of ambient air at Aspendale, Victoria (38∘ S), and a few archived air samples from the Northern Hemisphere. The atmospheric abundance in the Southern Hemisphere has monotonically grown over the past decades and leveled at 74 ppq (parts per quadrillion, femtomole per mole in dry air) by 2015–2018. The growth rate of c-C4F8O has decreased from a maximum in 2004 of 4.0 to 〈0.25 ppq yr−1 in 2017 and 2018. Using a 12-box atmospheric transport model, globally averaged yearly emissions and abundances of c-C4F8O are calculated for 1951–2018. Emissions, which we speculate to derive predominantly from usage of c-C4F8O as a solvent in the semiconductor industry, peaked at 0.15 (±0.04, 2σ) kt yr−1 in 2004 and have since declined to 〈0.015 kt yr−1 in 2017 and 2018. Cumulative emissions over the full range of our record amount to 2.8 (2.4–3.3) kt, which correspond to 34 Mt of CO2-equivalent emissions. Infrared and ultraviolet absorption spectra for c-C4F8O as well as the reactive channel rate coefficient for the O(1D) + c-C4F8O reaction were determined from laboratory studies. On the basis of these experiments, a radiative efficiency of 0.430 W m−2 ppb−1 (parts per billion, nanomol mol−1) was determined, which is one of the largest found for synthetic greenhouse gases. The global annually averaged atmospheric lifetime, including mesospheric loss, is estimated to be 〉3000 years. GWPs of 8975, 12 000, and 16 000 are estimated for the 20-, 100-, and 500-year time horizons, respectively.
    Materialart: Online-Ressource
    ISSN: 1680-7324
    Sprache: Englisch
    Verlag: Copernicus GmbH
    Publikationsdatum: 2019
    ZDB Id: 2092549-9
    ZDB Id: 2069847-1
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...