GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Type of Medium: Book
    Pages: [3] S , graph. Darst
    Series Statement: Reference / Woods Hole Oceanographic Institution 70,6
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-06
    Description: During two Atlantis II/Alvin cruises to the Juan de Fuca Ridge in 1984 active high temperature (140°–284°C) vents were sampled for black smoker particulates using the Grassle Pump. Individual mineral phases were identified using standard X ray diffraction and petrographic procedures. In addition, elemental compositions and particle morphologies were determined by X ray energy spectrometry and scanning electron microscope/X ray energy spectrometry techniques. The vent particulates from the southern Juan de Fuca Ridge vent sites were highly enriched in S, Si, Fe, Zn, and Cu and were primarily composed of sphalerite, wurtzite, pyrite, pyrrhotite, barite, chalcopyrite, cubanite, hydrous iron oxides, and elemental sulfur. Two additional unidentified phases which were prevalent in the samples included an Fe-Si phase and a Ca-Si phase. The grain sizes of the individual particle phases ranged from 〈 2 μm for the sphalerite and Fe oxide particles to 〉 100 μm for the Fe-Si particles. Grain size and current meter data were used in a deposition model of individual phase dispersal. For many of the larger sulfide and sulfate particles, the model predicts dispersal to occur over length scales of only several hundreds of meters. The high-temperature black smokers from the more northerly Endeavour Segment vents were highly enriched in Fe, S, Ca, Cu, and Zn and were primarily composed of anhydrite, chalcopyrite, sphalerite, barite, sulfur, pyrite, and other less abundant metal sulfide minerals. The grain sizes of the individual particles ranged from 〈 10 μm to slightly larger than 500 μm. The composition and size distributions of the mineral phases are highly suggestive of high-temperature mixing between vent fluids and seawater. A series of field and laboratory studies were conducted to determine the rates of dissolution of several sulfate and sulfide minerals. The dissolution rates ranged over more than 3 orders of magnitude, from 3.2 × 10−8 cm s−1 for anhydrite to 1.2 × 10−12 cm s−1 for chalcopyrite. The results indicate that for some minerals, particularly anhydrite and marcasite, total dissolution occurs within a few hours to a few weeks of their formation. For other more stable minerals, including pyrite, sphalerite and chalcopyrite, the time required for total dissolution is much longer, and consequently, individual crystals may be expected to persist in the sediments for considerable periods of time after deposition.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Environmental science & technology 21 (1987), S. 193-198 
    ISSN: 1520-5851
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Environmental science & technology 27 (1993), S. 2685-2691 
    ISSN: 1520-5851
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 15 (1973), S. 331-358 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Insofar as saturation kinetics are applicable to the growth of phytoplankton in laboratory experiments and to growth in nature, the computer modeling of intracellular nutrient partitioning in populations of cells can lead to better understanding of the dynamics of natural populations.A three-compartment mathematical model was developed to represent a phytoplankton population having the capability to store nitrogen in a nitrate-limited environment. Parameters were estimated by fitting the model to data from two chemostat experiments reported by Caperon (1968). The model was used to simulate growth dynamics observed in chemostat and batch experiments. The model demonstrated the changes which may occur in the nitrogenous constituents of a phytoplankton population with time and environmental conditions. The model also demonstrates three phenomena which have been observed in field and laboratory experiments but which are not represented by the customary Monod model: (1) uptake rates may significantly exceed not growth rates, (2) high growth rates may be encountered at very low environmental nitrate concentrations, and (3) the ratio of internal nitrogen to population size may change significantly during a study period. It is suggested that the amount of nitorgen in storage may be used as an indicator of the physiological state of a monospecific population.Parameters for the one-compartment Monod model were estimated by customary methods form data generated by the three-compartment model. It was shown that difficulties encountered in estimating the yield coefficient and the decay coefficient may be attributed to the intracellular storage phenomenon. It was also demonstrated that the one-compartment Monod model was inadequate to accurately represent population growth in chemostat experiments when intracellular storage is a significant factor.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The mechanically stimulable bioluminescence of members of the Gonyaulax catenella group can be maximally photoinhibited by exposure to as few as 1013 quanta/cm2, a factor 104 times smaller than that required for comparable photoinhibition in Gonyaulax polyedra and all other photosynthetic bioluminescent dinoflagellates investigated. Following an irradiation pulse there is an initial time lag of one minute, followed by a rapid decrease in mechanical stimulability to approximately 1% of the dark unirradiated control with a firstorder rate constant as high as 0.01 sec-1. Action spectra for all three species imply a pigment with a single absorption band having a maximum at 562 nm and a half band width of 105 nm within the spectral range 325 nm to 775 nm. Photoinhibition appears to decrease either the sensitivity of the shear receptor mechanism or the efficiency of signal transmission in the dinoflagellates, since chemically stimulable bioluminescence is unaffected by these exposures.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...