GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 43 (2016): 6205–6211, doi:10.1002/2016GL069430.
    Description: High-resolution geophysical data have been collected using the Autonomous Underwater Vehicle (AUV) Sentry over the ASHES (Axial Seamount Hydrothermal Emission Study) high-temperature (~348°C) vent field at Axial Seamount, on the Juan de Fuca Ridge. Multiple surveys were performed on a 3-D grid at different altitudes above the seafloor, providing an unprecedented view of magnetic data resolution as a function of altitude above the seafloor. Magnetic data derived near the seafloor show that the ASHES field is characterized by a zone of low magnetization, which can be explained by hydrothermal alteration of the host volcanic rocks. Surface manifestations of hydrothermal activity at the ASHES vent field are likely controlled by a combination of local faults and fractures and different lava morphologies near the seafloor. Three-dimensional inversion of the magnetic data provides evidence of a vertical, pipe-like upflow zone of the hydrothermal fluids with a vertical extent of ~100 m.
    Description: Royal Society of New Zealand Grant Number: GNS1003; New Zealand Ministry of Business, Innovation and Employment (MBIE) Grant Numbers: OCE-1131455, OCE-1337473, OCE-1131772; NSF
    Description: 2016-12-24
    Keywords: ASHES vent field ; Crustal magnetization ; Sentry AUV
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 18 (2017): 1259-1281, doi:10.1002/2017GC007152.
    Description: The permeability of the oceanic crust exerts a primary influence on the vigor of hydrothermal circulation at mid‐ocean ridges, but it is a difficult to measure parameter that varies with time, space, and geological setting. Here we develop an analytical model for the poroelastic response of hydrothermal exit‐fluid velocities and temperatures to ocean tidal loading in a two‐layered medium to constrain the discharge zone permeability of each layer. The top layer, corresponding to extrusive lithologies (e.g., seismic layer 2A) overlies a lower permeability layer, corresponding to intrusive lithologies (e.g., layer 2B). We apply the model to three basalt‐hosted hydrothermal fields (i.e., Lucky Strike, Main Endeavour and 9°46′N L‐vent) for which the seismic stratigraphy is well‐established, and for which robust exit‐fluid temperature data are available. We find that the poroelastic response to tidal loading is primarily controlled by layer 2A permeability, which is about 3 orders of magnitude higher for the Lucky Strike site (∼10−10 m2) than the 9°46′N L‐vent site (∼10−13 m2). By contrast, layer 2B permeability does not exert a strong control on the poroelastic response to tidal loading, yet strongly modulates the heat output of hydrothermal discharge zones. Taking these constraints into account, we estimate a plausible range of layer 2B permeability between ∼10−15 m2 and an upper‐bound value of ∼10−14 (9°46′N L‐vent) to ∼10−12 m2 (Lucky Strike). These permeability structures reconcile the short‐term response and long‐term thermal output of hydrothermal sites, and provide new insights into the links between permeability and tectono‐magmatic processes along the global mid‐ocean ridge.
    Description: National Science Foundation Grant Numbers: OCE‐1536705, OCE‐1536943; Woods Hole Oceanographic Institution; Lamont‐Doherty Earth Observatory
    Description: 2018-10-20
    Keywords: Permeability ; Heat output ; Mid-ocean ridges ; Hydrothermal ; Poroelasticity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 17 (2016): 1435–1453, doi:10.1002/2015GC006144.
    Description: Time-series measurements of diffuse exit-fluid temperature and velocity collected with a new, deep-sea camera, and temperature measurement system, the Diffuse Effluent Measurement System (DEMS), were examined from a fracture network within the ASHES hydrothermal field located in the caldera of Axial Seamount, Juan de Fuca Ridge. The DEMS was installed using the HOV Alvin above a fracture near the Phoenix vent. The system collected 20 s of 20 Hz video imagery and 24 s of 1 Hz temperature measurements each hour between 22 July and 2 August 2014. Fluid velocities were calculated using the Diffuse Fluid Velocimetry (DFV) technique. Over the ∼12 day deployment, median upwelling rates and mean fluid temperature anomalies ranged from 0.5 to 6 cm/s and 0°C to ∼6.5°C above ambient, yielding a heat flux of 0.29 ± 0.22 MW m−2 and heat output of 3.1± 2.5 kW. Using a photo mosaic to measure fracture dimensions, the total diffuse heat output from cracks across ASHES field is estimated to be 2.05 ± 1.95 MW. Variability in temperatures and velocities are strongest at semidiurnal periods and show significant coherence with tidal height variations. These data indicate that periodic variability near Phoenix vent is modulated both by tidally controlled bottom currents and seafloor pressure, with seafloor pressures being the dominant influence. These results emphasize the importance of local permeability on diffuse hydrothermal venting at mid-ocean ridges and the need to better quantify heat flux associated with young oceanic crust.
    Description: NSF Grant Numbers: OCE-1131772, OCE-1131455, OCE-1337473; University of Washington, and the NSF award Grant Number: OCE-0957938
    Description: 2016-10-27
    Keywords: ASHES hydrothermal field ; Diffuse heat flux ; Hydrothermal vents ; Mid-ocean ridges
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...