GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 103 (2014): 277-287, doi:10.1016/j.dsr2.2013.03.027.
    Description: Development of forecasting systems for harmful algal blooms (HABs) has been a long-standing research and management goal. Significant progress has been made in the Gulf of Maine, where seasonal bloom forecasts are now being issued annually using Alexandrium fundyense cyst abundance maps and a population dynamics model developed for that organism. Thus far these forecasts have used terms such as “significant”, “moderately large” or “moderate” to convey the extent of forecasted paralytic shellfish poisoning (PSP) outbreaks. In this study, historical shellfish harvesting closure data along the coast of the Gulf of Maine were used to derive a series of bloom severity levels that are analogous to those used to define major storms like hurricanes or tornados. Thirty-four years of PSP-related shellfish closure data for Maine, Massachusetts and New Hampshire were collected and mapped to depict the extent of coastline closure in each year. Due to fractal considerations, different methods were explored for measuring length of coastline closed. Ultimately, a simple procedure was developed using arbitrary straight-line segments to represent specific sections of the coastline. This method was consistently applied to each year’s PSP toxicity closure map to calculate the total length of coastline closed. Maps were then clustered together statistically to yield distinct groups of years with similar characteristics. A series of categories or levels was defined (“Level 1: Limited”, “Level 2: Moderate”, and “Level 3: Extensive”) each with an associated range of expected coastline closed, which can now be used instead of vague descriptors in future forecasts. This will provide scientifically consistent and simply defined information to the public as well as resource managers who make decisions on the basis of the forecasts.
    Description: Research support provided through the Woods Hole Center for Oceans and Human Health, National Science Foundation (NSF) Grants OCE-0430724, and OCE-0911031; and National Institute of Environmental Health Sciences (NIEHS) Grant 1-P50-ES012742-01, the ECOHAB Grant program through NOAA Grant NA06NOS4780245, and the PCM HAB Grant program through NOAA Grant NA11NOS4780023.
    Keywords: Alexandrium fundyense ; Harmful algal blooms ; HABs ; PSP ; Forecasts
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 103 (2014): 174-184, doi:10.1016/j.dsr2.2013.05.011.
    Description: In early July 2009, an unusually high concentration of the toxic dinoflagellate Alexandrium fundyense occurred in the western Gulf of Maine, causing surface waters to appear reddish brown to the human eye. The discolored water appeared to be the southern terminus of a large-scale event that caused shellfish toxicity along the entire coast of Maine to the Canadian border. Rapid-response shipboard sampling efforts together with satellite data suggest the water discoloration in the western Gulf of Maine was a highly ephemeral feature of less than two weeks in duration. Flow cytometric analysis of surface samples from the red water indicated the population was undergoing sexual reproduction. Cyst fluxes downstream of the discolored water were the highest ever measured in the Gulf of Maine, and a large deposit of new cysts was observed that fall. Although the mechanisms causing this event remain unknown, its timing coincided with an anomalous period of downwelling-favorable winds that could have played a role in aggregating upward-swimming cells. Regardless of the underlying causes, this event highlights the importance of short-term episodic phenomena on regional population dynamics of A. fundyense.
    Description: The R/V Tioga sampling effort was facilitated by event response funding from the National Oceanic Atmospheric Administration (NOAA), National Ocean Service, Center for Sponsored Coastal Ocean Research, through NOAA Cooperative Agreement NA17RJ1223. Additional support for follow-up analysis and synthesis was provided by NOAA grant NA06NOS4780245 for the Gulf of Maine Toxicity (GOMTOX) program and the Woods Hole Center for Oceans and Human Health through National Science Foundation grants OCE- 0430724 and OCE-0911031 and National Institute of Environmental Health Sciences grant 1P50-ES01274201.
    Keywords: Phytoplankton ; Population dynamics ; Red tides ; Cysts ; Paralytic shellfish poisoning ; USA ; Gulf of Maine
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 103 (2014): 264-276, doi:10.1016/j.dsr2.2013.09.018.
    Description: A major goal in harmful algal bloom (HAB) research has been to identify mechanisms underlying interannual variability in bloom magnitude and impact. Here the focus is on variability in Alexandrium fundyense blooms and paralytic shellfish poisoning (PSP) toxicity in Maine, USA, over 34 years (1978 – 2011). The Maine coastline was divided into two regions - eastern and western Maine, and within those two regions, three measures of PSP toxicity (the percent of stations showing detectable toxicity over the year, the cumulative amount of toxicity per station measured in all shellfish (mussel) samples during that year, and the duration of measurable toxicity) were examined for each year in the time series. These metrics were combined into a simple HAB Index that provides a single measure of annual toxin severity across each region. The three toxin metrics, as well as the HAB Index that integrates them, reveal significant variability in overall toxicity between individual years as well as long-term, decadal patterns or regimes. Based on different conceptual models of the system, we considered three trend formulations to characterize the long-term patterns in the Index – a three-phase (mean-shift) model, a linear two-phase model, and a pulse-decline model. The first represents a “regime shift” or multiple equilibria formulation as might occur with alternating periods of sustained high and low cyst abundance or favorable and unfavorable growth conditions, the second depicts a scenario of more gradual transitions in cyst abundance or growth conditions of vegetative cells, and the third characterizes a ”sawtooth” pattern in which upward shifts in toxicity are associated with major cyst recruitment events, followed by a gradual but continuous decline until the next pulse. The fitted models were compared using both residual sum of squares and Akaike’s Information Criterion. There were some differences between model fits, but none consistently gave a better fit than the others. This statistical underpinning can guide efforts to identify physical and/or biological mechanisms underlying the patterns revealed by the HAB Index. Although A. fundyense cyst survey data (limited to 9 years) do not span the entire interval of the shellfish toxicity records, this analysis leads us to hypothesize that major changes in the abundance of A. fundyense cysts may be a primary factor contributing to the decadal trends in shellfish toxicity in this region. The HAB Index approach taken here is simple but represents a novel and potentially useful tool for resource managers in many areas of the world subject to toxic HABs.
    Description: Research support provided through the Woods Hole Center for Oceans and Human Health, National Science Foundation (NSF) Grants OCE- 1128041 and OCE-1314642; and National Institute of Environmental Health Sciences (NIEHS) Grant 1-P50-ES021923-01, the ECOHAB Grant program through NOAA Grants NA06NOS4780245 and NA09NOS4780193, the MERHAB Grant program through NOAA Grant NA11NOS4780025, the PCMHAB Grant program through NOAA Grant NA11NOS4780023, and funding through the states of ME, NH, and MA. Funding for J.L. Martin was provided by Fisheries and Oceans Canada.
    Keywords: Alexandrium fundyense ; Harmful algal blooms ; HABs ; PSP ; HAB Index
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...