GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-01-08
    Description: The Ionian Sea in southern Italy is at the center of active interaction and convergence between the Eurasian and African–Adriatic plates in the Mediterranean. This area is seismically active with instrumentally and/or historically recorded Mw 〉 7:0 earthquakes, and it is affected by recently discovered long strike-slip faults across the active Calabrian accretionary wedge. Many mud volcanoes occur on top of the wedge. A recently discovered one (called the Bortoluzzi Mud Volcano or BMV) was surveyed during the Seismofaults 2017 cruise (May 2017). Bathymetric backscatter surveys, seismic reflection profiles, geochemical and earthquake data, and a gravity core are used here to geologically, geochemically, and geophysically characterize this structure. The BMV is a circular feature ' 22m high and ' 1100m in diameter with steep slopes (up to a dip of 22 ). It sits atop the Calabrian accretionary wedge and a system of flowerlike oblique-slip faults that are probably seismically active as demonstrated by earthquake hypocentral and focal data. Geochemistry of water samples from the seawater column on top of the BMV shows a significant contamination of the bottom waters from saline (evaporite-type) CH4-dominated crustalderived fluids similar to the fluids collected from a mud volcano located on the Calabria mainland over the same accretionary wedge. These results attest to the occurrence of open crustal pathways for fluids through the BMV down to at least the Messinian evaporites at about 􀀀3000 m. This evidence is also substantiated by helium isotope ratios and by comparison and contrast with different geochemical data from three seawater columns located over other active faults in the Ionian Sea area. One conclusion is that the BMV may be useful for tracking the seismic cycle of active faults through geochemical monitoring. Due to the widespread diffusion of mud volcanoes in seismically active settings, this study contributes to indicating a future path for the use of mud volcanoes in the monitoring and mitigation of natural hazards.
    Description: Published
    Description: 1-23
    Description: 3SR TERREMOTI - Attività dei Centri
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-05-12
    Description: 3D geological models from multi-source data (cross-sections, geological maps, borehole logs and outcrops) are a critical tool to improve the interpretation of the spatial organization of subsurface structures that are not directly accessible. In this paper, we reconstruct the main geological structures and surfaces in three dimensions through the interpolation of closely and regularly spaced 2D seismic sections, constrained by wells data and surface geology. The methodology was applied in the Marche–Abruzzi sector of the Periadriatic basin, where the more external part of the Apennines fold-and-thrust belt is mostly buried under a syn- and post-orogenic, Plio–Pleistocene, siliciclastic sequence. The 3D model allowed us to correlate the main thrust fronts and related anticlines along strike, revealing a general ramp – flat – ramp trajectory characterizing the main structural trends. This geometric organization influences the sequence of thrust-system propagation and characterizes the evolution of syntectonic basins. The obtained 3D model points out several variation occurring along strike: i) main trends geometric relationships; ii) deformation chronology and iii) displacement distribution. In the northern sector, higher displacement and structural elevation are reached out by the Nereto–Bellante structure, whereas in the southern sector the Villadegna–Costiera Structure is the prevalent. All structures show a diachronic thrusts activity along strike, younger toward the north.
    Description: Published
    Description: 107-121
    Description: 9T. Geochimica dei fluidi applicata allo studio e al monitoraggio di aree sismiche
    Description: JCR Journal
    Keywords: 3d modeling ; structural geology ; 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-03-03
    Description: New high-resolution geophysical data collected along the eastern margin of the Tyrrhenian back-arc basin, in the Pontine Islands area, reveal a ∼NW-SE elongated morphological high, the Ventotene Volcanic Ridge (VR), located on the northern edge of the Ventotene Basin. High-resolution multibeam bathymetry, combined with magnetic data, multi- and single-channel seismic profiles, and ROV dives, suggest that VR results from aggregation of a series of volcanic edifices. The summit of these volcanoes is flat and occurs at about 170 m water depth. Given their depths, we propose that flat morphologies were probably caused by surf erosion during Quaternary glacial sea level lowstands. Seismic stratigraphy together with magnetic data suggest that the volcanic activity in this area is older than 190–130 ka age and may be coeval with that of Ventotene Island (Middle Pleistocene). The submarine volcanoes, located 25 km north of Ventotene, are part of a ∼E-W regional volcanic alignment and extend the Pontine volcanism landward toward the Gaeta bay. Integration of structural data from multichannel seismic profiles in this sector of the eastern Tyrrhenian margin indicates that several normal and/or transtensional faults, striking WNW-ESE, NNW-SSE, and NE-SW, offset the basement and form alternating structural highs and depressions filled by thick, mostly undeformed, sedimentary units. Arc-related magmatism is widespread in the study area, where the VR is placed at the hangingwall of the west-directed Apennines subduction zone, which is undergoing tensional and transtensional tectonics. Bathymetric and topographic evidence shows that VR lies in between a major NE-SW trending escarpment east of Ponza and a NE-SW trending graben southwest of the Roccamonfina volcano, a NE-SW transfer zone that accommodate the extension along this segmented portion of the margin. This suggests that the interaction between NE-SW and NW-SE trending fault systems acts as a structural control on location of eruptive centers, given that main volcanic edifices develop along the NW-SE direction, compatible with the extensional setting of the Tyrrhenian basin.
    Description: Published
    Description: 86
    Description: 3A. Geofisica marina
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-01-27
    Description: The SEISMOFAULTS project (www.seismofaults.it) was set up in 2016 with the general plan of exploring the seismicity of marine areas using deep seafloor observatories. The activity of the first two years (Seismofaults 2017 and 2018) consisted of the installation of a geophysical-geochemical temporary monitoring network over the Ionian Sea floor. Eleven ocean-bottom seismometers with hydrophones (OBS/H) and two seafloor geochemical-geophysical multiparametric observatories were deployed to: (1) identify seismically active faults; (2) identify potential geochemical precursors of earthquakes; and (3) understand possible cause–effect relationships between earthquakes and submarine slides. Furthermore, five gravity cores were collected from the Ionian Sea bottom and ~4082 km of geophysical acquisition, including multibeam and single channel seismic reflection data, were acquired for a total of 4970 km2 high-resolution multibeam bathymetry. Using Niskin bottles, four water column samples were collected: two corresponding at the location of the two multiparametric observatories (i.e., along presumably-active fault zones), one corresponding at a recently discovered mud volcano, and one located above a presumably-active fault zone away from the other three sites. Preliminary results show: (1) a significant improvement in the quality and quantity of seismological records; (2) endogenous venting from presumably active faults; (3) active geofluid venting from a recently-discovered mud volcano; and (4) the correct use of most submarine devices. Preliminary results from the SEISMOFAULTS project show and confirm the potential of multidisciplinary marine studies, particularly in geologically active areas like southern Italy and the Mediterranean Sea.
    Description: Published
    Description: SE326
    Description: 3A. Geofisica marina e osservazioni multiparametriche a fondo mare
    Description: JCR Journal
    Keywords: Earthquake; Ionian Sea; OBS.
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-12-05
    Description: The response of continental forelands to subduction and oblique collision is a widely investigated topic in geodynamics. The deformation occurring within a foreland shared by two opposite-verging chains, however, is not very common and poorly understood. The Apulia block, at the southern end of the Adria microplate, Central Mediterranean, represents one of these latter cases, being the common foreland of the Dinarides and Apennines orogens. In its southern part, the Apulian foreland has preserved the Mesozoic paleomargin at the transition with the old oceanic Ionian crust that conversely underwent subduction under the Calabrian and Hellenic arcs. For these reasons, Apulia represents an interesting and rare case of study where double orogens and subduction have interacted with the foreland block. As described by various authors, the almost symmetrical bending of the Apulia foreland due the opposite load of the adjacent chains, produced a system of NW-SE trending normal faults. The precise age and the role of these faults have not been yet determined due to the lack of available information. In this contribution we investigated the internal deformation of the Apulia foreland using geophysical data at various resolutions and scales over a wide area. We used multichannel seismic profiles, part of which are provided in the collaborative framework between Spectrum Geo and INGV, recorded up to 12 s and provide a consistent imaging of the upper crustal setting of the Apulia foreland. High-resolution multichannel seismic profiles, multibeam high-resolution bathymetry and CHIRP profiles recently acquired by R/V OGS Explora provide constraints on the recent activity of the major fault systems identified. The analysis of this multiscale dataset highlights the presence and the role of a major NW-SE oriented active fault system which obliquely cuts the Apulia foreland. The presence of this fault system has already been hypothesized based on sparse seismic profiles, but its lateral continuity has never been documented. From the seismic viewpoint, this structure lies in a relatively silent area. Nonetheless, it hosts the 1743 Southern Apulia Mw 6.8 earthquake which widely damaged the Salento (S-Italy) and Ionian Islands (Greece) regions and whose source is still a matter of debate. This new geophysical dataset allowed us to reconstruct the 3D geometry of this fault system, whose architecture suggests a transtensive kinematics, and to analyse the syn-tectonic basins associated with the major faults which recorded the Late Quaternary to Holocene deformation. This work is being developed in the frame of the project “FASTMIT”, funded by the Italian Ministry of University and Research.
    Description: Unpublished
    Description: La Valletta, Malta
    Description: 2TR. Ricostruzione e modellazione della struttura crostale
    Keywords: Active Tectonics ; Marine Geology ; 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-07-08
    Description: The response of continental forelands to subduction and collision is a widely investigated topic in geodynamics. The deformation occurring within a foreland shared by two opposite‐verging chains, however, is uncommon and poorly understood. The Apulia Swell in the southern end of the Adria microplate (Africa‐Europe plate boundary, central Mediterranean Sea) represents one of these cases, as it is the common foreland of the SW verging Albanides‐Hellenides and the NE verging Southern Apennines merging into the SSE verging Calabrian Arc. We investigated the internal deformation of the Apulia Swell using multiscale geophysical data: multichannel seismic profiles recording up to 12‐s two‐way time (TWT) for a consistent image of the upper crust; high‐resolution multichannel seismic profiles, high‐resolution multibeam bathymetry, and CHIRP profiles acquired by R/V OGS Explora to constrain the Quaternary geological record. The results of our analyses characterize the geometry of the South Apulia Fault System (SAFS), a 100‐km‐long and 12‐km‐wide structure attesting an extensional (and possibly transtensional) response of the foreland to the two contractional fronts. The SAFS consists of two NW‐SE right‐stepping master faults and several secondary structures. The SAFS activity spans from the Early Pleistocene through the Holocene, as testified by the bathymetric and high‐resolution seismic data, with long‐term slip rates in the range of 0.2–0.4 mm/yr. Considering the position within an area with few or none other active faults in the surroundings, the dimension, and the activity rates, the SAFS can be a candidate causative fault of the 20 February 1743, M 6.7, earthquake.
    Description: Italian Ministry for Education, University, and Research (MIUR), Premiale 2014 D. M. 291 03/05/2016.
    Description: Published
    Description: e2020TC006116
    Description: 2T. Deformazione crostale attiva
    Description: 2TR. Ricostruzione e modellazione della struttura crostale
    Description: JCR Journal
    Keywords: active tectonics ; apulia ; south apulia fault system ; 1743 earthquake ; marine geology ; stable continental region ; ionian sea ; active faults ; subsurface geology ; seismic interpretation ; 04.04. Geology ; 04.07. Tectonophysics ; 04.02. Exploration geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-04-05
    Description: The fast individuation and modeling of faults responsible for large earthquakes are fundamental for understanding the evolution of potentially destructive seismic sequences. This is even more challenging in case of buried thrusts located in offshore areas, like those hosting the 9 November 2022 Ml 5.7 (Mw 5.5) and ML 5.2 earthquakes that nucleated along the Apennines compressional front, offshore the northern Adriatic Sea. Available on- and offshore (from hydrocarbon platforms) geodetic observations and seismological data provide robust constraints on the rupture of a 15 km long, ca. 24° SSW-dipping fault patch, consistent with seismic reflection data. Stress increase along unruptured portion of the activated thrust front suggests the potential activation of longer portions of the thrust with higher magnitude earthquake and larger surface faulting. This unpleasant scenario needs to be further investigated, also considering their tsunamigenic potential and possible impact on onshore and offshore human communities and infrastructures.
    Description: Published
    Description: 11474
    Description: OST2 Deformazione e Hazard sismico e da maremoto
    Description: OST3 Vicino alla faglia
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...