GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Epidemiology-Mathematical models. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (314 pages)
    Edition: 1st ed.
    ISBN: 9783030965624
    Series Statement: Modeling and Simulation in Science, Engineering and Technology Series
    DDC: 614.4015118
    Language: English
    Note: Intro -- Preface -- Contents -- Modelling, Simulations, and Social Impact of Evolutionary Virus Pandemics -- 1 Aims and Plan of the Chapter -- 2 On the Contents of the Edited Book -- 3 Reasonings on Research Perspectives -- References -- Understanding COVID-19 Epidemics: A Multi-Scale ModelingApproach -- 1 Introduction -- 2 Mathematical Modeling Applied to Infectious Diseases: COVID-19 as a Case Study -- 2.1 The SIR and SHAR Models -- 2.2 The SHARUCD Modeling Framework -- 2.3 Modeling the Implementation of Control Measures -- 2.4 The Refined SHARUCD Model -- 2.4.1 Further Refinements: Detection Rate and Import -- 3 KTAP Modeling Framework -- 3.1 Modeling Contagion, Progression, and Recovery -- 3.2 Application of the KTAP Model to Selected Case Studies -- 3.2.1 Effect of Lockdown Measures and Restrictions Lifting -- 3.2.2 Effect of Heterogeneity -- 4 Discussion -- References -- Kinetic Modelling of Epidemic Dynamics: Social Contacts, Control with Uncertain Data, and Multiscale Spatial Dynamics -- 1 Introduction -- 2 Kinetic Modelling of Social Heterogeneity in Epidemic Dynamics -- 2.1 Modelling Contact Heterogeneity -- 2.1.1 Kinetic Model for Contact Formation -- 2.1.2 Quasi-Invariant Scaling and Steady States -- 2.1.3 The Macroscopic Social-SIR Dynamics -- 2.1.4 A Social-SIR Model with Saturated Incidence Rate -- 2.1.5 Extrapolation of the Shape of the Incidence Rate from Data -- 2.2 The Interplay Between Economy and the Pandemic -- 2.2.1 Wealth Exchanges in Epidemic Modelling -- 2.2.2 Fokker-Planck Scaling and Steady States -- 2.2.3 The Formation of Bimodal Wealth Distributions -- 2.2.4 The Increase of Wealth Inequalities -- 3 Social Control and Data Uncertainty -- 3.1 Control of Socially Structured Models -- 3.1.1 Optimal Control Formulation -- 3.1.2 Feedback Controlled Compartmental Models. , 3.1.3 Containment in Homogeneous Social Mixing Dynamics -- 3.2 Dealing with Data Uncertainty -- 3.2.1 Feedback Controlled and Socially Structured Models with Uncertain Inputs -- 3.2.2 Application to the COVID-19 Outbreak -- 4 Multiscale Transport Models -- 4.1 Spatial Dynamics on Networks -- 4.1.1 1D Hyperbolic Compartmental Model -- 4.1.2 Macroscopic Formulation and Diffusion Limit -- 4.1.3 Extension to Multi-Compartmental Modelling -- 4.1.4 Network Modelling -- 4.1.5 Effect of Spatially Heterogeneous Environments in Hyperbolic and Parabolic Configuration -- 4.1.6 Application to the Emergence of COVID-19 in Italy -- 4.2 Realistic Geographical Settings -- 4.2.1 2D Kinetic Transport Model -- 4.2.2 Macroscopic Formulation and Diffusion Limit -- 4.2.3 Extension to Multi-Compartmental Modelling -- 4.2.4 Application to the Spatial Spread of COVID-19 in Italy in Emilia-Romagna and Lombardy Region -- 5 Concluding Remarks and Research Perspectives -- 5.1 Data sources -- References -- The COVID-19 Pandemic Evolution in Hawai`i and New Jersey: A Lesson on Infection Transmissibility and the Role of HumanBehavior -- 1 Introduction -- 2 Mathematical Models -- 2.1 Agent-Based Models -- 2.1.1 COVID-19 Agent-Based Simulator (Covasim) -- 2.2 Compartmental SEIR Models and Variants -- 2.3 Comparison of Agent-Based and Compartmental Models -- 3 Archipelagos and Islands -- 3.1 March 2020-June 2021 -- 3.1.1 CM Model Fit from March 06, 2020 to January 15, 2021 -- 3.1.2 Comparing CM and ABM Models -- 3.2 July 2021-September 2021 -- 3.3 Discussion -- 4 The Pandemic Waves in New Jersey -- 4.1 Comparing New Jersey to the US -- 4.2 Spatial and Temporal Patterns in COVID-19 Cases in New Jersey -- 4.3 Sociodemographic Variables -- 4.4 Discussion -- 5 The Use of Compartmental Models in New Jersey -- 5.1 Time-Evolution of the Basic Reproduction Number. , 5.2 Infected Confirmed Cases, Hospitalizations, and Deaths -- 5.3 Discussion -- 6 Conclusion -- References -- A Novel Point Process Model for COVID-19: Multivariate Recursive Hawkes Process -- 1 Introduction -- 1.1 Hawkes Point Process Modeling of Infectious Diseases -- 1.2 Multivariate Hawkes Processes -- 1.3 Recursive Hawkes Processes -- 1.4 Outline -- 2 Theoretical Properties of Temporal Multivariate Recursive Hawkes Models -- 2.1 Existence -- 2.2 Mean -- 2.3 Variance -- 3 Parameter Fitting and Simulation Algorithms -- 3.1 Parameter Fitting Algorithms -- 3.1.1 Parametric (or Semi-parametric) Estimation -- 3.1.2 Temporal Version of Parameter Fitting Algorithms -- 3.2 Simulation Algorithm -- 4 Reconstruct Multivariate Point Process from Data with Imprecise Time -- 4.1 Time Reconstruction -- 4.2 Category Index Reconstruction -- 5 Numerical Experiments and Results -- 5.1 Synthetic Data Sets -- 5.1.1 Comparison Between Parametric Fitting and Non-parametric Fitting -- 5.1.2 Verification of the Parameter Fitting Algorithm -- 5.1.3 Experiments About Data Sets with Imprecise Time -- 5.2 Experiments on Real COVID-19 Data -- 5.2.1 Model Validation -- 5.2.2 Prediction Based on MRHP and Historical Information -- 6 Conclusion -- References -- Multiscale Aspects of Virus Dynamics -- 1 Introduction -- 1.1 On the Biology of the Virus -- 1.2 Modeling the Complexity of COVID-19 -- 2 Epistemic and Empirical Uncertainties in Compartmental and Individual-Based Models -- 2.1 SIR Model -- 2.2 Individual-Based Interpretation of λ -- 2.3 An Example of Modified SIR Model -- 2.4 Individuals Behind the Modified SIR Model -- 2.5 Time-Discretization -- 3 The Individual-Based Model of FlaLaFauciRiva -- 3.1 A Formula for the Parameter λ of Compartmental Models -- 3.2 Analysis of the Fluctuations -- 3.3 Simulations -- 3.4 Presence of Immunized Population and Virus Variants. , Appendix -- References -- Productivity in Times of Covid-19: An Agent-Based Model Approach -- 1 Introduction -- 2 Model -- 3 Mean Field Approximation -- 4 Setting the Model Functions -- 5 Simulations -- 6 Conclusion -- References -- Transmission Dynamics and Quarantine Control of COVID-19 in Cluster Community -- 1 Introduction -- 2 Mathematical Modeling -- 2.1 Stage 1: SEIR-Type Model Without Quarantine -- 2.2 Stage 2: Transmission-Quarantine (TQ) Model -- 3 Analytic Results and Case Study for Emerging Stage -- 3.1 Analytic Results -- 3.2 A Real World Case Study for Stage 1 -- 4 Case Study and Sensitivity Analysis for Quarantine Stage -- 4.1 A Real World Study for Stage 2 -- 4.2 Sensitivity Analysis -- 5 Discussion -- Appendix: Proofs of Theorems -- References -- A 2D Kinetic Model for Crowd Dynamics with Disease Contagion -- 1 Introduction -- 2 A Simplified Two-Dimensional Kinetic Model -- 3 Discretization in Space and Time -- 4 Numerical Results -- 4.1 Tests with v = 0 -- 4.2 Tests with Prescribed Walking Velocity -- 5 A More Complex 2D Kinetic Model -- 6 Conclusions -- References -- Multiscale Derivation of a Time-Dependent SEIRD Reaction-Diffusion System for COVID-19 -- 1 Introduction -- 2 Phenomenological Modeling of Diffusion Population Dynamics -- 3 From Kinetic Theory Model to SEIRD Reaction-Diffusion System -- 3.1 Kinetic Theory Model -- 3.2 Micro-Macro Formulation -- 4 Numerical Method -- 4.1 Semi-Implicit Time Discretization -- 4.2 Fully Discrete Asymptotic Preserving Numerical Scheme in 1D -- 4.3 Boundary Conditions -- 5 Numerical Results -- 5.1 Test 1: Asymptotic Preserving Numerical Scheme Property -- 5.2 Test 2: Diffusion Effect -- 5.3 Test 3: Role of the Transmission Function -- 6 Conclusion and Perspectives -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of mathematical biology 59 (1997), S. 1191-1201 
    ISSN: 1522-9602
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Mathematics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...