GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of neuroscience 13 (2001), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Although glycine receptors (GlyRs) are responsible for the main spinal inhibitory responses in adult vertebrates, in the embryo they have been reported to mediate depolarizing responses, which can sometimes activate dihydropyridine-sensitive l-type calcium channels. However, these channels are not the only targets of dihydropyridines (DHPs), and we questioned whether GlyRs might be directly modulated by DHPs. By whole-cell recording of cultured spinal neurons, we investigated modulation of glycine responses by the calcium channel antagonists, nifedipine, nitrendipine, nicardipine and (R)-Bay K 8644, and by the calcium channel, agonist (S)-Bay K 8644. At concentrations between 1 and 10 µm, all these DHPs could block glycine responses, even in the absence of extracellular Ca2+. The block was stronger at higher glycine concentrations, and increased with time during each glycine application. Nicardipine blocked GABAA responses from the same neurons in a similar manner. In addition to their blocking effects, nitrendipine and nicardipine potentiated the peak responses to low glycine concentrations. Both effects of extracellular nitrendipine on glycine responses persisted when the drug was present in the intracellular solution. Thus, these modulations are related neither to calcium channel modulation nor to possible intracellular effects of DHPs. Another type of calcium antagonist, verapamil (10–50 µm), also blocked glycine responses. Our results suggest that some of the effects of calcium antagonists, including the neuroprotective and anticonvulsant effects of DHPs, might result partly from their interactions with ligand-gated chloride channels.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...