GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    Publication Date: 2022-06-06
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Teske, A., McKay, L. J., Ravelo, A. C., Aiello, I., Mortera, C., Núñez-Useche, F., Canet, C., Chanton, J. P., Brunner, B., Hensen, C., Ramírez, G. A., Sibert, R. J., Turner, T., White, D., Chambers, C. R., Buckley, A., Joye, S. B., Soule, S. A., & Lizarralde, D. Characteristics and evolution of sill-driven off-axis hydrothermalism in Guaymas Basin - the Ringvent site. Scientific Reports, 9(1), (2019): 13847, doi:10.1038/s41598-019-50200-5.
    Description: The Guaymas Basin spreading center, at 2000 m depth in the Gulf of California, is overlain by a thick sedimentary cover. Across the basin, localized temperature anomalies, with active methane venting and seep fauna exist in response to magma emplacement into sediments. These sites evolve over thousands of years as magma freezes into doleritic sills and the system cools. Although several cool sites resembling cold seeps have been characterized, the hydrothermally active stage of an off-axis site was lacking good examples. Here, we present a multidisciplinary characterization of Ringvent, an ~1 km wide circular mound where hydrothermal activity persists ~28 km northwest of the spreading center. Ringvent provides a new type of intermediate-stage hydrothermal system where off-axis hydrothermal activity has attenuated since its formation, but remains evident in thermal anomalies, hydrothermal biota coexisting with seep fauna, and porewater biogeochemical signatures indicative of hydrothermal circulation. Due to their broad potential distribution, small size and limited life span, such sites are hard to find and characterize, but they provide critical missing links to understand the complex evolution of hydrothermal systems.
    Description: This work was funded by NSF OCE grant 1449604 “Rapid Proposal: Guaymas Basin site survey cruise for IODP proposal 833” to Andreas Teske; NSF C-DEBI grant “Characterizing subseafloor life and environments in Guaymas Basin” to Andreas Teske, Ivano Aiello and Ana Christina Ravelo; and collaborative NSF Biological Oceanography grants 1357238 and 1357360 “Collaborative Research: Microbial carbon cycling and its interaction with sulfur and nitrogen transformations in Guaymas Basin hydrothermal sediments” to Andreas Teske and Samantha B. Joye, respectively. We thank the Alvin and Sentry teams for a stellar performance during Guaymas Basin cruise AT37-06, and the science crew of RV El Puma for their dedication, skill, and “can-do” collaborative spirit during the 2014 Guaymas coring campaign. Sequencing of bacterial and archaeal communities was supported by the Deep Carbon Observatory, and performed at the Marine Biological Laboratory in Woods Hole, MA.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: Highlights • In cold seeps of Guaymas Basin, aragonite, barite and pyrite precipitated from modified seawater. • Aragonite is highly depleted in 13C suggesting formation via anaerobic oxidation of methane. • Barite formed through mixing of reducing, Ba-rich seep fluids with a 34S-rich sulfate pool. • Pyrite framboids formed under anoxic-sulfidic water via microbial sulfate reduction. Abstract Authigenic carbonate crusts, surface muds and bivalve shell fragments have been recovered from inactive and active recently discovered cold seep sites in central Guaymas Basin. In this study, for first time, redox conditions and fluid sources involved in mineral precipitation were investigated by analyzing the mineralogy and textures of surface samples, along with skeletal contents, and C, O and S isotopes variations. The δ13C values of aragonitic bivalve shells and non-skeletal carbonate from some surface muds (1‰ to −3.7‰ V-PDB) suggest that carbonate precipitated from ambient dissolved inorganic carbon, whereas fibrous aragonite cement and non-skeletal carbonate from other sites are highly depleted in 13C (down to −47.6‰ V-PDB), suggesting formation via anaerobic oxidation of methane, characteristic of methane seepage environments. δ18O in most of the carbonates varies from +1.4‰ to +3.2‰ V-PDB, indicating that they formed from slightly modified seawater. Some non-skeletal carbonate grains from surface muds have lower δ18O values (−12.5‰ to −8.2‰ V-PDB) reflecting the influence of 18O-depleted pore water. Size distribution of pyrite framboids (mean value: 3.1 μm) scattered within diatomaceous sinter suggests formation from anoxic-sulfidic bottom waters. δ34S in pyrite is of −0.3‰ V-CDT compared to +46.6‰ V-CDT in barite, thus implying a fluid sulfate−sulfide fractionation of 21.3‰ that argues in favor of microbial sulfate reduction as the processes that mediated pyrite framboid formation, in a semi-closed system. Barite formation occurred through the mixing of reducing and Ba-rich seep fluids with a 34S-enriched sulfate pool that resulted from microbial sulfate reduction in a semi-closed system. The chemical composition of aragonite cement, barite and pyrite suggest mineral precipitation from modified seawater. Taken together, our data suggest that mineralization at the studied seep sites is controlled by the mixing of seawater with minor amounts of hydrothermal fluids, and oxygen-depleted conditions favoring anaerobic microbial processes.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-31
    Description: The Guaymas Basin spreading center, at 2000 m depth in the Gulf of California, is overlain by a thick sedimentary cover. Across the basin, localized temperature anomalies, with active methane venting and seep fauna exist in response to magma emplacement into sediments. These sites evolve over thousands of years as magma freezes into doleritic sills and the system cools. Although several cool sites resembling cold seeps have been characterized, the hydrothermally active stage of an off-axis site was lacking good examples. Here, we present a multidisciplinary characterization of Ringvent, an ~1 km wide circular mound where hydrothermal activity persists ~28 km northwest of the spreading center. Ringvent provides a new type of intermediate-stage hydrothermal system where off-axis hydrothermal activity has attenuated since its formation, but remains evident in thermal anomalies, hydrothermal biota coexisting with seep fauna, and porewater biogeochemical signatures indicative of hydrothermal circulation. Due to their broad potential distribution, small size and limited life span, such sites are hard to find and characterize, but they provide critical missing links to understand the complex evolution of hydrothermal systems.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...