GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
  • 1
    Type of Medium: Book
    Pages: 100 pages
    ISBN: 9789464206111
    Series Statement: European Marine Board Position Paper 26
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Type of Medium: Book
    Pages: 171 S. , Ill., graph. Darst.
    ISBN: 9789492043030
    Series Statement: European Marine Board Position Paper 21
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-02-08
    Description: MarsiteCruise was undertaken in October/November 2014 in the Sea of Marmara to gain detailed insight into the fate of fluids migrating within the sedimentary column and partially released into the water column. The overall objective of the project was to achieve a more global understanding of cold-seep dynamics in the context of a major active strike-slip fault. Five remotely operated vehicle (ROV) dives were performed at selected areas along the North Anatolian Fault and inherited faults. To efficiently detect, select and sample the gas seeps, we applied an original procedure. It combines sequentially (1) the acquisition of ship-borne multibeam acoustic data from the water column prior to each dive to detect gas emission sites and to design the tracks of the ROV dives, (2) in situ and real-time Raman spectroscopy analysis of the gas stream, and (3) onboard determination of molecular and isotopic compositions of the collected gas bubbles. The in situ Raman spectroscopy was used as a decision-making tool to evaluate the need for continuing with the sampling of gases from the discovered seep, or to move to another one. Push cores were gathered to study buried carbonates and pore waters at the surficial sediment, while CTD-Rosette allowed collecting samples to measure dissolved-methane concentration within the water column followed by a comparison with measurements from samples collected with the submersible Nautile during the Marnaut cruise in 2007. Overall, the visited sites were characterized by a wide diversity of seeps. CO2- and oil-rich seeps were found at the westernmost part of the sea in the Tekirdag Basin, while amphipods, anemones and coral populated the sites visited at the easternmost part in the Cinarcik Basin. Methane-derived authigenic carbonates and bacterial mats were widespread on the seafloor at all sites with variable size and distributions. The measured methane concentrations in the water column were up to 377 μmol, and the dissolved pore-water profiles indicated the occurrence of sulfate depleting processes accompanied with carbonate precipitation. The pore-water profiles display evidence of biogeochemical transformations leading to the fast depletion of seawater sulfate within the first 25-cm depth of the sediment. These results show that the North Anatolian Fault and inherited faults are important migration paths for fluids for which a significant part is discharged into the water column, contributing to the increase of methane concentration at the bottom seawater and favoring the development of specific ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-02-08
    Description: Extensive seafloor authigenic carbonate crusts occur as pavements, mounds and chimneys along the North Anatolian Fault System (NAFS) in the Sea of Marmara. They are often covered or surrounded by patches of black Fe-sulphide-rich sediments, and associated with hydrocarbon-rich gas and brackish-water emissions in the 1250 m-deep deep basins and with deep saline formation waters and hydrocarbons emissions from mud volcanoes and anticlines on the 350–650 m-deep compressional highs. The authigenic carbonate crusts are commonly porous with sinter-like, botryoidal and sugary- granular textures, and constructed from cementation of framework elements consisting mainly of bivalve shells and shell fragments, serpulid tubes, fibrous microbial organic matter and rarely pebbles. The authigenic cements consist mainly of aragonite in most sites, but high Mg-calcite occurs as a major carbonate cement at some basinal sites, where the brackish former Marmara “Lake” waters emerge. The buoyant emission of brackish waters in the deep Marmara basins and deeply sourced fluids from the Tertiary Thrace basin at the compressional highs are supported by relatively low δ18O values (+0.5‰ to +3.8‰ V-PDB, average = +2.1‰V-PDB, n = 24) of carbonates in the former and high values (+2.6‰ to +3.4‰ V-PDB, average = +3.0‰, n = 9) in the latter areas. Low δ13C values (−47.6‰ to −13.7‰ V-PDB, average: −34.9‰ V-PDB, n = 33) and close association with black reduced sediments indicate that the seafloor authigenic carbonates are formed by the anaerobic oxidation of methane (AOM) at or near the seafloor, as result of high methane flux, possibly during periods of high seismic activity. Authigenic carbonates from the Western and Central highs are relatively less depleted in 13C than those of the deep basin sites, suggesting both microbial and thermogenic methane source for the deep basins carbonates and mainly thermogenic hydrocarbon, with some contribution from the biodegradation of heavy hydrocarbons and gas hydrate dissociation, for carbonates from the compressional highs. U-Th ages of the authigenic carbonates range from less than 1 ka BP to 9.6 ka BP. The age distribution, together with the geochemical and mineralogical data, suggests that different processes such as seismo-tectonics and gas hydrates destabilization might have played important role in the authigenic carbonate formation in the Sea of Marmara over the last 10 ka.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-02-08
    Description: On continental margins, upward migration of fluids from various sources and various subsurface accumulations, through the sedimentary column to the seafloor, leads to the development of cold seeps where chemical compounds are discharged into the water column. MarsiteCruise was undertaken in November 2014 to investigate the dynamics of cold seeps characterized by vigorous gas emissions in the Sea of Marmara (SoM).A previous paper published by Bourry et al. (2009) presented the gas geochemistry of three seeps sampled along three different segments in the SoM. Their findings showed that the seeps were sourced by three different reservoirs. In this paper, seventeen seeps were investigated to determine the gas sources, unravel reservoir contributions, and estimate their level of mixing. The molecular and stable isotope compositions of the gas compounds were determined to establish the empirical diagrams that usually allow to delineate source domains. The results provide insights into the complexities of source mixing within the sedimentary column of the SoM before emission of the gases into the water column. The seep gases originate from deep thermogenic or microbial hydrocarbon sources, or from a CO2-rich source. Microbial sources producing methane from primary methanogenesis have been identified in the Tekirdağand the Çinarcik basins. In addition, six different thermogenic reservoirs or six different pathways of migration are responsible for the supply of gas to the seeps on the highs and in the western basin. Five of them are undergoing biodegradation followed by secondary methanogenesis, thereby providing additional sources of microbial methane to the seeps. Overall, the gases emitted by the seventeen seeps consist of variable mixtures of different components from two or three sources.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-02-08
    Description: The submerged portions of the North-Anatolian Fault (NAF) in the Sea of Marmara and the NE-Aegean Sea are sites of large magnitude earthquakes, that leave diagnostic geological “signatures” in the sedimentary record in the form of mass-wasting deposits, turbidites, and fluid and gas escape features. This is due to the interplay of seismic-shaking, mass- and turbidity flows, sediment resuspension and fluids circulation in relatively small sub-basins with a complex paleo-oceanography, steep slopes, high rates of deformation, and diffuse fault-controlled gas and fluid seeps. To unravel the complex interrelations of these phenomena during earthquake cycles, we carried out paleoseismological studies at several key locations. Here, we report results of these studies, carried out onboard the R/V Urania over a decade, starting soon after the Mw 7.4, 1999 İzmit earthquake. Our work included high resolution mapping of active faults through multibeam bathymetry and high resolution seismic reflection profiles, multi-parameter analysis of sediment cores, as well as seafloor observations using sensors mounted on remotely-operated vehicles (ROV). The main objectives were to map active faults, determine slip-rates and earthquake recurrence times along major fault strands, and assess connections between fault deformation and fluid activity. We mapped fault geometry in the gulfs of İzmit, Gemlik and Saros, showing the trans-tensive nature of these depressions. The average slip-rates for the last ~ 10 ka was found to be 10 mm/y in the gulfs of İzmit and Saros, at the eastern and the western ends of the NAF northern strand, and 3–4 mm/yr in the Gulf of Gemlik, along the middle strand of the NAF. These rates, integrated over 10 ka of NAF activity, are smaller than those determined by the GPS geodetic measurements. Submarine paleoseismological studies in the Gulf of İzmit detected the sedimentary records of earthquakes for the last 2.4 ka, suggesting an average recurrence time of 300 years for major events. Multisensor observations and monitoring of the seafloor have shown widespread emissions of gas and fluids along the submerged part of the NAF, associated with reduced black sediments; we investigated their possible connection with the earthquake cycle.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-06
    Description: The structural evolution of Lake Van Basin, eastern Turkey, was reconstructed based on seismic reflection profiles through the sedimentary fill as well as from newly acquired multibeam echosounder data. The major sub-basins (Tatvan Basin and Northern Basin) of Lake Van, bound by NE-trending faults with normal components, formed during the past ~600 ka probably due to extensional tectonics resulting from lithospheric thinning and mantle upwelling related to the westward escape of Anatolia. Rapid extension and subsidence during early lake formation led to the opening of the two sub-basins. Two major, still active volcanoes (Nemrut and Süphan) grew close to the lake basins approximately synchronously, their explosive deposits making up 〉20 % of the drilled upper 220 m of the ca. 550-m-thick sedimentary fill. During basin development, extension and subsidence alternated with compressional periods, particularly between ~340 and 290 ka and sometime before ~14 ka, when normal fault movements reversed and gentle anticlines formed as a result of inversion. The ~14 ka event was accompanied by widespread uplift and erosion along the northeastern margin of the lake, and substantial erosion took place on the crests of the folds. A series of closely spaced eruptions of Süphan volcano occurred synchronously suggesting a causal relationship. Compression is still prevalent inside and around Lake Van as evidenced by recent faults offsetting the lake floor and by recent devastating earthquakes along their onshore continuations. New, high-resolution bathymetry data from Lake Van reveal the morphology of the Northern Ridge and provide strong evidence for ongoing transpression on a dextral strike-slip fault as documented by the occurrence of several pop-up structures along the ridge.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Eos, Transactions American Geophysical Union, 92 (51). pp. 477-479.
    Publication Date: 2017-02-10
    Description: Sedimentary archives host a wealth of information that can be used to reconstruct paleoclimate as well as the tectonic and volcanic histories of specific regions. Long and continuous archives from the oceans have been collected in thousands of locations by scientific ocean drilling programs over the past 40 years. In contrast, suitable continental archives are rare because terrestrial environments are generally nondepositional and/or subject to erosion. Lake sediments provide ideal drilling targets to overcome this limitation if suitable lakes at key locations have existed continuously for a long time.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-09-23
    Description: Society’s needs for a network of in situ ocean observing systems cross many areas of earth and marine science. Here we review the science themes that benefit from data supplied from ocean observatories. Understanding from existing studies is fragmented to the extent that it lacks the coherent long-term monitoring needed to address questions at the scales essential to understand climate change and improve geo-hazard early warning. Data sets from the deep sea are particularly rare with long-term data available from only a few locations worldwide. These science areas have impacts on societal health and well-being and our awareness of ocean function in a shifting climate. Substantial efforts are underway to realise a network of open-ocean observatories around European Seas that will operate over multiple decades. Some systems are already collecting high-resolution data from surface, water column, seafloor, and sub-seafloor sensors linked to shore by satellite or cable connection in real or near-real time, along with samples and other data collected in a delayed mode. We expect that such observatories will contribute to answering major ocean science questions including: How can monitoring of factors such as seismic activity, pore fluid chemistry and pressure, and gas hydrate stability improve seismic, slope failure, and tsunami warning? What aspects of physical oceanography, biogeochemical cycling, and ecosystems will be most sensitive to climatic and anthropogenic change? What are natural versus anthropogenic changes? Most fundamentally, how are marine processes that occur at differing scales related? The development of ocean observatories provides a substantial opportunity for ocean science to evolve in Europe. Here we also describe some basic attributes of network design. Observatory networks provide the means to coordinate and integrate the collection of standardised data capable of bridging measurement scales across a dispersed area in European Seas adding needed certainty to estimates of future oceanic conditions. Observatory data can be analysed along with other data such as those from satellites, drifting floats, autonomous underwater vehicles, model analysis, and the known distribution and abundances of marine fauna in order to address some of the questions posed above. Standardised methods for information management are also becoming established to ensure better accessibility and traceability of these data sets and ultimately to increase their use for societal benefit. The connection of ocean observatory effort into larger frameworks including the Global Earth Observation System of Systems (GEOSS) and the Global Monitoring of Environment and Security (GMES) is integral to its success. It is in a greater integrated framework that the full potential of the component systems will be realised. Highlights ► Societies increasingly depend on timely information on ecosystems and natural hazards. ► Data is needed to improve climate-related uncertainty and geo-hazard early warning. ► Observatory networks coordinate and integrate the collection of standardised data. ► Ocean observatories provide opportunity for ocean science to evolve.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-04-27
    Description: Understanding of the evolution of fluid-fault interactions during earthquake cycles is a challenge that acoustic gas emission studies can contribute. A survey of the Sea of Marmara using a shipborne, multibeam echo sounder, with water column records, provided an accurate spatial distribution of offshore seeps. Gas emissions are spatially controlled by a combination of factors, including fault and fracture networks in connection to the Main Marmara Fault system and inherited faults, the nature and thickness of sediments (e.g., occurrence of impermeable or gas-bearing sediments and landslides), and the connectivity between the seafloor and gas sources, particularly in relation to the Eocene Thrace Basin. The relationship between seepage and fault activity is not linear, as active faults do not necessarily conduct gas, and scarps corresponding to deactivated fault strands may continue to channel fluids. Within sedimentary basins, gas is not expelled at the seafloor unless faulting, deformation, or erosional processes affect the sediments. On topographic highs, gas flares occur along the main fault scarps but are also associated with sediment deformation. The occurrence of gas emissions appears to be correlated with the distribution of microseismicity. The relative absence of earthquake-induced ground shaking along parts of the Istanbul-Silivri and Princes Islands segments is likely the primary factor responsible for the comparative lack of gas emissions along these fault segments. The spatiotemporal distribution of gas seeps may thus provide a complementary way to constrain earthquake geohazards by focusing the study on some key fault segments, e.g., the northern part of the locked Princes Islands segment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...