GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2016-08-24
    Beschreibung: Repeated cocaine exposure regulates transcriptional regulation within the nucleus accumbens (NAc), and epigenetic mechanisms—such as histone acetylation and methylation on Lys residues—have been linked to these lasting actions of cocaine. In contrast to Lys methylation, the role of histone Arg (R) methylation remains underexplored in addiction models. Here we show...
    Print ISSN: 0027-8424
    Digitale ISSN: 1091-6490
    Thema: Biologie , Medizin , Allgemeine Naturwissenschaft
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2013-09-12
    Beschreibung: Regulation of gene expression is a vital part of the cellular stress response, yet the full set of proteins that orchestrate this regulation remains unknown. Snt2 is a Saccharomyces cerevisiae protein whose function has not been well characterized that was recently shown to associate with Ecm5 and the Rpd3 deacetylase. Here, we confirm that Snt2, Ecm5, and Rpd3 physically associate. We then demonstrate that cells lacking Rpd3 or Snt2 are resistant to hydrogen peroxide (H 2 O 2 )-mediated oxidative stress and use chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) to show that Snt2 and Ecm5 recruit Rpd3 to a small number of promoters and in response to H 2 O 2 , colocalize independently of Rpd3 to the promoters of stress response genes. By integrating ChIP-seq and expression analyses, we identify target genes that require Snt2 for proper expression after H 2 O 2 . Finally, we show that cells lacking Snt2 are also resistant to nutrient stress imparted by the TOR (target of rapamycin) pathway inhibitor rapamycin and identify a common set of genes targeted by Snt2 and Ecm5 in response to both H 2 O 2 and rapamycin. Our results establish a function for Snt2 in regulating transcription in response to oxidative stress and suggest Snt2 may also function in multiple stress pathways.
    Print ISSN: 0270-7306
    Digitale ISSN: 1098-5549
    Thema: Biologie , Medizin
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2012-10-19
    Beschreibung: Histone chaperones represent a structurally and functionally diverse family of histone-binding proteins that prevent promiscuous interactions of histones before their assembly into chromatin. DAXX is a metazoan histone chaperone specific to the evolutionarily conserved histone variant H3.3. Here we report the crystal structures of the DAXX histone-binding domain with a histone H3.3-H4 dimer, including mutants within DAXX and H3.3, together with in vitro and in vivo functional studies that elucidate the principles underlying H3.3 recognition specificity. Occupying 40% of the histone surface-accessible area, DAXX wraps around the H3.3-H4 dimer, with complex formation accompanied by structural transitions in the H3.3-H4 histone fold. DAXX uses an extended alpha-helical conformation to compete with major inter-histone, DNA and ASF1 interaction sites. Our structural studies identify recognition elements that read out H3.3-specific residues, and functional studies address the contributions of Gly 90 in H3.3 and Glu 225 in DAXX to chaperone-mediated H3.3 variant recognition specificity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4056191/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4056191/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Elsasser, Simon J -- Huang, Hongda -- Lewis, Peter W -- Chin, Jason W -- Allis, C David -- Patel, Dinshaw J -- 1S10RR022321-01/RR/NCRR NIH HHS/ -- 1S10RR027037-01/RR/NCRR NIH HHS/ -- MC_U105181009/Medical Research Council/United Kingdom -- P30 EB009998/EB/NIBIB NIH HHS/ -- P30-EB-009998/EB/NIBIB NIH HHS/ -- S10 RR022321/RR/NCRR NIH HHS/ -- S10 RR027037/RR/NCRR NIH HHS/ -- U105181009/PHS HHS/ -- UD99999908/PHS HHS/ -- Medical Research Council/United Kingdom -- England -- Nature. 2012 Nov 22;491(7425):560-5. doi: 10.1038/nature11608. Epub 2012 Oct 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23075851" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Adaptor Proteins, Signal Transducing/chemistry/metabolism ; Amino Acid Sequence ; Binding, Competitive ; Cell Cycle Proteins/genetics/metabolism ; Crystallography, X-Ray ; DNA/chemistry/*metabolism ; Histone Chaperones/chemistry/metabolism ; Histones/*chemistry/*metabolism ; Humans ; Models, Molecular ; Molecular Sequence Data ; Nuclear Proteins/chemistry/metabolism ; Nucleosomes/chemistry/metabolism ; Protein Conformation ; Protein Multimerization ; Substrate Specificity ; Water/chemistry/metabolism
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2014-12-10
    Beschreibung: The role of cellular metabolism in regulating cell proliferation and differentiation remains poorly understood. For example, most mammalian cells cannot proliferate without exogenous glutamine supplementation even though glutamine is a non-essential amino acid. Here we show that mouse embryonic stem (ES) cells grown under conditions that maintain naive pluripotency are capable of proliferation in the absence of exogenous glutamine. Despite this, ES cells consume high levels of exogenous glutamine when the metabolite is available. In comparison to more differentiated cells, naive ES cells utilize both glucose and glutamine catabolism to maintain a high level of intracellular alpha-ketoglutarate (alphaKG). Consequently, naive ES cells exhibit an elevated alphaKG to succinate ratio that promotes histone/DNA demethylation and maintains pluripotency. Direct manipulation of the intracellular alphaKG/succinate ratio is sufficient to regulate multiple chromatin modifications, including H3K27me3 and ten-eleven translocation (Tet)-dependent DNA demethylation, which contribute to the regulation of pluripotency-associated gene expression. In vitro, supplementation with cell-permeable alphaKG directly supports ES-cell self-renewal while cell-permeable succinate promotes differentiation. This work reveals that intracellular alphaKG/succinate levels can contribute to the maintenance of cellular identity and have a mechanistic role in the transcriptional and epigenetic state of stem cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336218/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336218/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carey, Bryce W -- Finley, Lydia W S -- Cross, Justin R -- Allis, C David -- Thompson, Craig B -- P30 CA008748/CA/NCI NIH HHS/ -- R01 CA105463/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Feb 19;518(7539):413-6. doi: 10.1038/nature13981. Epub 2014 Dec 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York 10065, USA. ; Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25487152" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Animals ; Cell Differentiation/drug effects ; Cell Line ; Cell Membrane Permeability ; Cell Proliferation ; Chromatin/drug effects ; DNA Methylation/drug effects ; Embryonic Stem Cells/*cytology/drug effects/metabolism ; Epigenesis, Genetic/drug effects/genetics ; Glucose/metabolism ; Glutamic Acid/metabolism ; Histones/metabolism ; Intracellular Space/*metabolism ; Ketoglutaric Acids/*metabolism/pharmacology ; Methylation ; Mice ; Pluripotent Stem Cells/*cytology/drug effects/metabolism ; Succinic Acid/metabolism/pharmacology ; Transcription, Genetic/drug effects
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    facet.materialart.
    Unbekannt
    American Association for the Advancement of Science (AAAS)
    Publikationsdatum: 2011-03-10
    Beschreibung: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Elsasser, Simon J -- Allis, C David -- Lewis, Peter W -- New York, N.Y. -- Science. 2011 Mar 4;331(6021):1145-6. doi: 10.1126/science.1203280.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chromatin Biology and Epigenetics, Rockefeller University, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21385704" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Adaptor Proteins, Signal Transducing/*genetics/metabolism ; Chromatin/metabolism ; Chromatin Assembly and Disassembly/genetics ; DNA Helicases/*genetics/metabolism ; *Epigenesis, Genetic ; *Genes, Tumor Suppressor ; Histones/metabolism ; Humans ; Mutation ; Neuroendocrine Tumors/*genetics/metabolism ; Nuclear Proteins/*genetics/metabolism ; Nucleosomes/metabolism ; Pancreatic Neoplasms/*genetics/metabolism ; Proto-Oncogene Proteins/*genetics/metabolism ; Signal Transduction ; TOR Serine-Threonine Kinases/metabolism
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2015-05-06
    Beschreibung: Transposable elements comprise roughly 40% of mammalian genomes. They have an active role in genetic variation, adaptation and evolution through the duplication or deletion of genes or their regulatory elements, and transposable elements themselves can act as alternative promoters for nearby genes, resulting in non-canonical regulation of transcription. However, transposable element activity can lead to detrimental genome instability, and hosts have evolved mechanisms to silence transposable element mobility appropriately. Recent studies have demonstrated that a subset of transposable elements, endogenous retroviral elements (ERVs) containing long terminal repeats (LTRs), are silenced through trimethylation of histone H3 on lysine 9 (H3K9me3) by ESET (also known as SETDB1 or KMT1E) and a co-repressor complex containing KRAB-associated protein 1 (KAP1; also known as TRIM28) in mouse embryonic stem cells. Here we show that the replacement histone variant H3.3 is enriched at class I and class II ERVs, notably those of the early transposon (ETn)/MusD family and intracisternal A-type particles (IAPs). Deposition at a subset of these elements is dependent upon the H3.3 chaperone complex containing alpha-thalassaemia/mental retardation syndrome X-linked (ATRX) and death-domain-associated protein (DAXX). We demonstrate that recruitment of DAXX, H3.3 and KAP1 to ERVs is co-dependent and occurs upstream of ESET, linking H3.3 to ERV-associated H3K9me3. Importantly, H3K9me3 is reduced at ERVs upon H3.3 deletion, resulting in derepression and dysregulation of adjacent, endogenous genes, along with increased retrotransposition of IAPs. Our study identifies a unique heterochromatin state marked by the presence of both H3.3 and H3K9me3, and establishes an important role for H3.3 in control of ERV retrotransposition in embryonic stem cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4509593/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4509593/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Elsasser, Simon J -- Noh, Kyung-Min -- Diaz, Nichole -- Allis, C David -- Banaszynski, Laura A -- R01 GM040922/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Jun 11;522(7555):240-4. doi: 10.1038/nature14345. Epub 2015 May 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge CB2 0QH, UK [2] Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden. ; Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA. ; 1] Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA [2] Cecil H. and Ida Green Center for Reproductive Biology Science and Children's Medical Center Research Institute, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25938714" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Animals ; Carrier Proteins/metabolism ; Cell Line ; DNA Helicases/metabolism ; Embryonic Stem Cells/*virology ; Endogenous Retroviruses/*genetics ; *Gene Silencing ; Genomic Instability ; Heterochromatin/genetics/metabolism ; Histones/chemistry/*metabolism ; Intracellular Signaling Peptides and Proteins/metabolism ; Methylation ; Mice ; Nuclear Proteins/metabolism
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2016-05-14
    Beschreibung: Several types of pediatric cancers reportedly contain high-frequency missense mutations in histone H3, yet the underlying oncogenic mechanism remains poorly characterized. Here we report that the H3 lysine 36-to-methionine (H3K36M) mutation impairs the differentiation of mesenchymal progenitor cells and generates undifferentiated sarcoma in vivo. H3K36M mutant nucleosomes inhibit the enzymatic activities of several H3K36 methyltransferases. Depleting H3K36 methyltransferases, or expressing an H3K36I mutant that similarly inhibits H3K36 methylation, is sufficient to phenocopy the H3K36M mutation. After the loss of H3K36 methylation, a genome-wide gain in H3K27 methylation leads to a redistribution of polycomb repressive complex 1 and de-repression of its target genes known to block mesenchymal differentiation. Our findings are mirrored in human undifferentiated sarcomas in which novel K36M/I mutations in H3.1 are identified.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lu, Chao -- Jain, Siddhant U -- Hoelper, Dominik -- Bechet, Denise -- Molden, Rosalynn C -- Ran, Leili -- Murphy, Devan -- Venneti, Sriram -- Hameed, Meera -- Pawel, Bruce R -- Wunder, Jay S -- Dickson, Brendan C -- Lundgren, Stefan M -- Jani, Krupa S -- De Jay, Nicolas -- Papillon-Cavanagh, Simon -- Andrulis, Irene L -- Sawyer, Sarah L -- Grynspan, David -- Turcotte, Robert E -- Nadaf, Javad -- Fahiminiyah, Somayyeh -- Muir, Tom W -- Majewski, Jacek -- Thompson, Craig B -- Chi, Ping -- Garcia, Benjamin A -- Allis, C David -- Jabado, Nada -- Lewis, Peter W -- DP2CA174499/CA/NCI NIH HHS/ -- DP2OD007447/OD/NIH HHS/ -- K08CA151660/CA/NCI NIH HHS/ -- K08CA181475/CA/NCI NIH HHS/ -- P01CA196539/CA/NCI NIH HHS/ -- P30CA008748/CA/NCI NIH HHS/ -- R01GM110174/GM/NIGMS NIH HHS/ -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2016 May 13;352(6287):844-9. doi: 10.1126/science.aac7272.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA. ; Epigenetics Theme, Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI 53715, USA. Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53715, USA. ; Department of Human Genetics, McGill University, Montreal, Quebec H3Z 2Z3, Canada. ; Epigenetics Program and Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA. Department of Chemistry, Princeton University, Princeton, NJ 08544, USA. ; Human Oncology and Pathogenesis Program and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA. ; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA. ; University Musculoskeletal Oncology Unit, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada. Department of Surgical Oncology and Division of Orthopedic Surgery, Princess Margaret Hospital, University of Toronto, Toronto, Ontario M5T 2M9, Canada. ; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada. Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada. ; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA. ; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada. Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada. Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada. The Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario M5G 1X5, Canada. ; Department of Medical Genetics and Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario K1H 8L1, Canada. ; Division of Orthopaedic Surgery, Montreal General Hospital, McGill University Health Centre, Montreal, Quebec H3G 1A4, Canada. ; Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Human Oncology and Pathogenesis Program and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA. ; Epigenetics Program and Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA. ; Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA. plewis@discovery.wisc.edu nada.jabado@mcgill.ca alliscd@rockefeller.edu. ; Department of Human Genetics, McGill University, Montreal, Quebec H3Z 2Z3, Canada. Department of Pediatrics, McGill University, Montreal, Quebec H3Z 2Z3, Canada. plewis@discovery.wisc.edu nada.jabado@mcgill.ca alliscd@rockefeller.edu. ; Epigenetics Theme, Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI 53715, USA. Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53715, USA. plewis@discovery.wisc.edu nada.jabado@mcgill.ca alliscd@rockefeller.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27174990" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2013-03-30
    Beschreibung: Sequencing of pediatric gliomas has identified missense mutations Lys27Met (K27M) and Gly34Arg/Val (G34R/V) in genes encoding histone H3.3 (H3F3A) and H3.1 (HIST3H1B). We report that human diffuse intrinsic pontine gliomas (DIPGs) containing the K27M mutation display significantly lower overall amounts of H3 with trimethylated lysine 27 (H3K27me3) and that histone H3K27M transgenes are sufficient to reduce the amounts of H3K27me3 in vitro and in vivo. We find that H3K27M inhibits the enzymatic activity of the Polycomb repressive complex 2 through interaction with the EZH2 subunit. In addition, transgenes containing lysine-to-methionine substitutions at other known methylated lysines (H3K9 and H3K36) are sufficient to cause specific reduction in methylation through inhibition of SET-domain enzymes. We propose that K-to-M substitutions may represent a mechanism to alter epigenetic states in a variety of pathologies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3951439/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3951439/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lewis, Peter W -- Muller, Manuel M -- Koletsky, Matthew S -- Cordero, Francisco -- Lin, Shu -- Banaszynski, Laura A -- Garcia, Benjamin A -- Muir, Tom W -- Becher, Oren J -- Allis, C David -- DP2OD007447/OD/NIH HHS/ -- GM040922/GM/NIGMS NIH HHS/ -- R01 GM040922/GM/NIGMS NIH HHS/ -- R01 GM107047/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 May 17;340(6134):857-61. doi: 10.1126/science.1232245. Epub 2013 Mar 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23539183" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Amino Acid Substitution ; Animals ; Brain Neoplasms/*enzymology/*genetics ; Child ; *Epigenesis, Genetic ; Glioblastoma/*enzymology/*genetics ; HEK293 Cells ; Histones/*genetics/metabolism ; Humans ; Lysine/genetics ; Methionine/genetics ; Methylation ; Mice ; Mutation, Missense ; Polycomb Repressive Complex 2/*antagonists & inhibitors/metabolism ; Transgenes
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2014-12-20
    Beschreibung: Over 70% of diffuse intrinsic pediatric gliomas, an aggressive brainstem tumor, harbor heterozygous mutations that create a K27M amino acid substitution (methionine replaces lysine 27) in the tail of histone H3.3. The role of the H3.3K27M mutation in tumorigenesis is not fully understood. Here, we use a human embryonic stem cell system to model this tumor. We show that H3.3K27M expression synergizes with p53 loss and PDGFRA activation in neural progenitor cells derived from human embryonic stem cells, resulting in neoplastic transformation. Genome-wide analyses indicate a resetting of the transformed precursors to a developmentally more primitive stem cell state, with evidence of major modifications of histone marks at several master regulator genes. Drug screening assays identified a compound targeting the protein menin as an inhibitor of tumor cell growth in vitro and in mice.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Funato, Kosuke -- Major, Tamara -- Lewis, Peter W -- Allis, C David -- Tabar, Viviane -- New York, N.Y. -- Science. 2014 Dec 19;346(6216):1529-33. doi: 10.1126/science.1253799. Epub 2014 Nov 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurosurgery, Center for Stem Cell Biology and Brain Tumor Center, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA. ; Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53715, USA. ; Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA. ; Department of Neurosurgery, Center for Stem Cell Biology and Brain Tumor Center, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA. tabarv@mskcc.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25525250" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Animals ; Antineoplastic Agents/pharmacology ; Brain Stem Neoplasms/*genetics/pathology ; Cell Transformation, Neoplastic/*genetics/pathology ; Child ; Drug Screening Assays, Antitumor ; Embryonic Stem Cells/*metabolism/pathology ; Epigenesis, Genetic ; Gene Expression Regulation, Neoplastic ; Genome-Wide Association Study ; Glioma/*genetics/pathology ; Histones/*genetics ; Humans ; Mice ; *Models, Genetic ; Neural Stem Cells/*metabolism/pathology ; Proto-Oncogene Proteins/antagonists & inhibitors ; Tumor Suppressor Protein p53/genetics
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Digitale Medien
    Digitale Medien
    Springer
    Cellular and molecular life sciences 54 (1998), S. 6-20 
    ISSN: 1420-9071
    Schlagwort(e): Key words. Transcription; chromatin; nucleosomes; histones; acetylation; acetyltransferases.
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Medizin
    Notizen: Abstract. In eukaryotes, DNA is assembled with histones to form nucleosomes, the basic subunit of chromatin structure. The wrapping of DNA around histone octamers to form nucleosomal filaments and further folding of these filaments are necessary to contain eukaryotic genomes within nuclei. However, the dense packing of chromatin in nuclei and the association of DNA with histones restrict the access of proteins involved in gene transcription to DNA. Abundant biochemical data supports a long-standing correlation between histone acetylation and gene activation, suggesting that histone acetylation acts to enhance the access of transcription-associated proteins to DNA. However, despite this correlation, nuclear enzymes responsible for transcription-associated histone acetylation have been identified only recently. Here we review evidence suggesting that histone acetylation represents a major pathway for transcriptional regulation, and discuss possible roles for transcription-associated histone acetyltransferases in this regulation.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...