GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Nature Climate Change, Springer Science and Business Media LLC, Vol. 2, No. 5 ( 2012-5), p. 365-371
    Type of Medium: Online Resource
    ISSN: 1758-678X , 1758-6798
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2012
    detail.hit.zdb_id: 2603450-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 3, No. 1 ( 2013-06-18)
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2013
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: JAMA Network Open, American Medical Association (AMA), Vol. 5, No. 11 ( 2022-11-16), p. e2242354-
    Abstract: Cancer screening deficits during the first year of the COVID-19 pandemic were found to persist into 2021. Cancer-related deaths over the next decade are projected to increase if these deficits are not addressed. Objective To assess whether participation in a nationwide quality improvement (QI) collaborative, Return-to-Screening, was associated with restoration of cancer screening. Design, Setting, and Participants Accredited cancer programs electively enrolled in this QI study. Project-specific targets were established on the basis of differences in mean monthly screening test volumes (MTVs) between representative prepandemic (September 2019 and January 2020) and pandemic (September 2020 and January 2021) periods to restore prepandemic volumes and achieve a minimum of 10% increase in MTV. Local QI teams implemented evidence-based screening interventions from June to November 2021 (intervention period), iteratively adjusting interventions according to their MTVs and target. Interrupted time series analyses was used to identify the intervention effect. Data analysis was performed from January to April 2022. Exposures Collaborative QI support included provision of a Return-to-Screening plan-do-study-act protocol, evidence-based screening interventions, QI education, programmatic coordination, and calculation of screening deficits and targets. Main Outcomes and Measures The primary outcome was the proportion of QI projects reaching target MTV and counterfactual differences in the aggregate number of screening tests across time periods. Results Of 859 cancer screening QI projects (452 for breast cancer, 134 for colorectal cancer, 244 for lung cancer, and 29 for cervical cancer) conducted by 786 accredited cancer programs, 676 projects (79%) reached their target MTV. There were no hospital characteristics associated with increased likelihood of reaching target MTV except for disease site (lung vs breast, odds ratio, 2.8; 95% CI, 1.7 to 4.7). During the preintervention period (April to May 2021), there was a decrease in the mean MTV (slope, −13.1 tests per month; 95% CI, −23.1 to −3.2 tests per month). Interventions were associated with a significant immediate (slope, 101.0 tests per month; 95% CI, 49.1 to 153.0 tests per month) and sustained (slope, 36.3 tests per month; 95% CI, 5.3 to 67.3 tests per month) increase in MTVs relative to the preintervention trends. Additional screening tests were performed during the intervention period compared with the prepandemic period (170 748 tests), the pandemic period (210 450 tests), and the preintervention period (722 427 tests). Conclusions and Relevance In this QI study, participation in a national Return-to-Screening collaborative with a multifaceted QI intervention was associated with improvements in cancer screening. Future collaborative QI endeavors leveraging accreditation infrastructure may help address other gaps in cancer care.
    Type of Medium: Online Resource
    ISSN: 2574-3805
    Language: English
    Publisher: American Medical Association (AMA)
    Publication Date: 2022
    detail.hit.zdb_id: 2931249-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Geoscientific Model Development, Copernicus GmbH, Vol. 10, No. 10 ( 2017-10-12), p. 3715-3743
    Abstract: Abstract. Understanding natural and anthropogenic climate change processes involves using computational models that represent the main components of the Earth system: the atmosphere, ocean, sea ice, and land surface. These models have become increasingly computationally expensive as resolution is increased and more complex process representations are included. However, to gain robust insight into how climate may respond to a given forcing, and to meaningfully quantify the associated uncertainty, it is often required to use either or both ensemble approaches and very long integrations. For this reason, more computationally efficient models can be very valuable tools. Here we provide a comprehensive overview of the suite of climate models based around the HadCM3 coupled general circulation model. This model was developed at the UK Met Office and has been heavily used during the last 15 years for a range of future (and past) climate change studies, but has now been largely superseded for many scientific studies by more recently developed models. However, it continues to be extensively used by various institutions, including the BRIDGE (Bristol Research Initiative for the Dynamic Global Environment) research group at the University of Bristol, who have made modest adaptations to the base HadCM3 model over time. These adaptations mean that the original documentation is not entirely representative, and several other relatively undocumented configurations are in use. We therefore describe the key features of a number of configurations of the HadCM3 climate model family, which together make up HadCM3@Bristol version 1.0. In order to differentiate variants that have undergone development at BRIDGE, we have introduced the letter B into the model nomenclature. We include descriptions of the atmosphere-only model (HadAM3B), the coupled model with a low-resolution ocean (HadCM3BL), the high-resolution atmosphere-only model (HadAM3BH), and the regional model (HadRM3B). These also include three versions of the land surface scheme. By comparing with observational datasets, we show that these models produce a good representation of many aspects of the climate system, including the land and sea surface temperatures, precipitation, ocean circulation, and vegetation. This evaluation, combined with the relatively fast computational speed (up to 1000 times faster than some CMIP6 models), motivates continued development and scientific use of the HadCM3B family of coupled climate models, predominantly for quantifying uncertainty and for long multi-millennial-scale simulations.
    Type of Medium: Online Resource
    ISSN: 1991-9603
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2017
    detail.hit.zdb_id: 2456725-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Climate of the Past, Copernicus GmbH, Vol. 16, No. 5 ( 2020-10-26), p. 1953-1968
    Abstract: Abstract. Accurate estimates of past global mean surface temperature (GMST) help to contextualise future climate change and are required to estimate the sensitivity of the climate system to CO2 forcing through Earth's history. Previous GMST estimates for the latest Paleocene and early Eocene (∼57 to 48 million years ago) span a wide range (∼9 to 23 ∘C higher than pre-industrial) and prevent an accurate assessment of climate sensitivity during this extreme greenhouse climate interval. Using the most recent data compilations, we employ a multi-method experimental framework to calculate GMST during the three DeepMIP target intervals: (1) the latest Paleocene (∼57 Ma), (2) the Paleocene–Eocene Thermal Maximum (PETM; 56 Ma), and (3) the early Eocene Climatic Optimum (EECO; 53.3 to 49.1 Ma). Using six different methodologies, we find that the average GMST estimate (66 % confidence) during the latest Paleocene, PETM, and EECO was 26.3 ∘C (22.3 to 28.3 ∘C), 31.6 ∘C (27.2 to 34.5 ∘C), and 27.0 ∘C (23.2 to 29.7 ∘C), respectively. GMST estimates from the EECO are ∼10 to 16 ∘C warmer than pre-industrial, higher than the estimate given by the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (9 to 14 ∘C higher than pre-industrial). Leveraging the large “signal” associated with these extreme warm climates, we combine estimates of GMST and CO2 from the latest Paleocene, PETM, and EECO to calculate gross estimates of the average climate sensitivity between the early Paleogene and today. We demonstrate that “bulk” equilibrium climate sensitivity (ECS; 66 % confidence) during the latest Paleocene, PETM, and EECO is 4.5 ∘C (2.4 to 6.8 ∘C), 3.6 ∘C (2.3 to 4.7 ∘C), and 3.1 ∘C (1.8 to 4.4 ∘C) per doubling of CO2. These values are generally similar to those assessed by the IPCC (1.5 to 4.5 ∘C per doubling CO2) but appear incompatible with low ECS values (〈1.5 per doubling CO2).
    Type of Medium: Online Resource
    ISSN: 1814-9332
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2217985-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Climate of the Past, Copernicus GmbH, Vol. 17, No. 1 ( 2021-01-15), p. 203-227
    Abstract: Abstract. We present results from an ensemble of eight climate models, each of which has carried out simulations of the early Eocene climate optimum (EECO, ∼ 50 million years ago). These simulations have been carried out in the framework of the Deep-Time Model Intercomparison Project (DeepMIP; http://www.deepmip.org, last access: 10 January 2021); thus, all models have been configured with the same paleogeographic and vegetation boundary conditions. The results indicate that these non-CO2 boundary conditions contribute between 3 and 5 ∘C to Eocene warmth. Compared with results from previous studies, the DeepMIP simulations generally show a reduced spread of the global mean surface temperature response across the ensemble for a given atmospheric CO2 concentration as well as an increased climate sensitivity on average. An energy balance analysis of the model ensemble indicates that global mean warming in the Eocene compared with the preindustrial period mostly arises from decreases in emissivity due to the elevated CO2 concentration (and associated water vapour and long-wave cloud feedbacks), whereas the reduction in the Eocene in terms of the meridional temperature gradient is primarily due to emissivity and albedo changes owing to the non-CO2 boundary conditions (i.e. the removal of the Antarctic ice sheet and changes in vegetation). Three of the models (the Community Earth System Model, CESM; the Geophysical Fluid Dynamics Laboratory, GFDL, model; and the Norwegian Earth System Model, NorESM) show results that are consistent with the proxies in terms of the global mean temperature, meridional SST gradient, and CO2, without prescribing changes to model parameters. In addition, many of the models agree well with the first-order spatial patterns in the SST proxies. However, at a more regional scale, the models lack skill. In particular, the modelled anomalies are substantially lower than those indicated by the proxies in the southwest Pacific; here, modelled continental surface air temperature anomalies are more consistent with surface air temperature proxies, implying a possible inconsistency between marine and terrestrial temperatures in either the proxies or models in this region. Our aim is that the documentation of the large-scale features and model–data comparison presented herein will pave the way to further studies that explore aspects of the model simulations in more detail, for example the ocean circulation, hydrological cycle, and modes of variability, and encourage sensitivity studies to aspects such as paleogeography, orbital configuration, and aerosols.
    Type of Medium: Online Resource
    ISSN: 1814-9332
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2217985-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Science Advances, American Association for the Advancement of Science (AAAS), Vol. 5, No. 10 ( 2019-10-04)
    Abstract: The East Asian monsoon plays an integral role in human society, yet its geological history and controlling processes are poorly understood. Using a general circulation model and geological data, we explore the drivers controlling the evolution of the monsoon system over the past 150 million years. In contrast to previous work, we find that the monsoon is controlled primarily by changes in paleogeography, with little influence from atmospheric CO 2 . We associate increased precipitation since the Late Cretaceous with the gradual uplift of the Himalayan-Tibetan region, transitioning from an ITCZ-dominated monsoon to a sea breeze–dominated monsoon. The rising region acted as a mechanical barrier to cold and dry continental air advecting into the region, leading to increasing influence of moist air from the Indian Ocean/South China Sea. We show that, apart from a dry period in the middle Cretaceous, a monsoon system has existed in East Asia since at least the Early Cretaceous.
    Type of Medium: Online Resource
    ISSN: 2375-2548
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2019
    detail.hit.zdb_id: 2810933-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2022
    In:  Nature Communications Vol. 13, No. 1 ( 2022-06-14)
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 13, No. 1 ( 2022-06-14)
    Abstract: Today, warm-water coral reefs are limited to tropical-to-subtropical latitudes. These diverse ecosystems extended further poleward in the geological past, but the mechanisms driving these past distributions remain uncertain. Here, we test the role of climate and palaeogeography in shaping the distribution of coral reefs over geological timescales. To do so, we combine habitat suitability modelling, Earth System modelling and the ~247-million-year geological record of scleractinian coral reefs. A broader latitudinal distribution of climatically suitable habitat persisted throughout much of the Mesozoic–early Paleogene due to an expanded tropical belt and more equable distribution of shallow marine substrate. The earliest Cretaceous might be an exception, with reduced shallow marine substrate during a ‘cold-snap’ interval. Climatically suitable habitat area became increasingly skewed towards the tropics from the late Paleogene, likely steepening the latitudinal biodiversity gradient of reef-associated taxa. This was driven by global cooling and increases in tropical shallow marine substrate resulting from the tectonic evolution of the Indo-Australian Archipelago. Although our results suggest global warming might permit long-term poleward range expansions, coral reef ecosystems are unlikely to keep pace with the rapid rate of anthropogenic climate change.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Climate of the Past, Copernicus GmbH, Vol. 15, No. 4 ( 2019-08-05), p. 1463-1483
    Abstract: Abstract. The amount of dioxygen (O2) in the atmosphere may have varied from as little as 5 % to as much as 35 % during the Phanerozoic eon (54 Ma–present). These changes in the amount of O2 are large enough to have led to changes in atmospheric mass, which may alter the radiative budget of the atmosphere, leading to this mechanism being invoked to explain discrepancies between climate model simulations and proxy reconstructions of past climates. Here, we present the first fully 3-D numerical model simulations to investigate the climate impacts of changes in O2 under different climate states using the coupled atmosphere–ocean Hadley Centre Global Environmental Model version 3 (HadGEM3-AO) and Hadley Centre Coupled Model version 3 (HadCM3-BL) models. We show that simulations with an increase in O2 content result in increased global-mean surface air temperature under conditions of a pre-industrial Holocene climate state, in agreement with idealised 1-D and 2-D modelling studies. We demonstrate the mechanism behind the warming is complex and involves a trade-off between a number of factors. Increasing atmospheric O2 leads to a reduction in incident shortwave radiation at the Earth's surface due to Rayleigh scattering, a cooling effect. However, there is a competing warming effect due to an increase in the pressure broadening of greenhouse gas absorption lines and dynamical feedbacks, which alter the meridional heat transport of the ocean, warming polar regions and cooling tropical regions. Case studies from past climates are investigated using HadCM3-BL and show that, in the warmest climate states in the Maastrichtian (72.1–66.0 Ma), increasing oxygen may lead to a temperature decrease, as the equilibrium climate sensitivity is lower. For the Asselian (298.9–295.0 Ma), increasing oxygen content leads to a warmer global-mean surface temperature and reduced carbon storage on land, suggesting that high oxygen content may have been a contributing factor in preventing a “Snowball Earth” during this period of the early Permian. These climate model simulations reconcile the surface temperature response to oxygen content changes across the hierarchy of model complexity and highlight the broad range of Earth system feedbacks that need to be accounted for when considering the climate response to changes in atmospheric oxygen content.
    Type of Medium: Online Resource
    ISSN: 1814-9332
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2217985-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2022
    In:  Nature Communications Vol. 13, No. 1 ( 2022-07-07)
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 13, No. 1 ( 2022-07-07)
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...