GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Berlin : Springer Spektrum
    Keywords: Earth sciences ; Earth Sciences ; Atmospheric sciences ; Geophysics ; Climate change ; Earth sciences ; Atmospheric sciences ; Geophysics ; Climate change ; Europa ; Synoptik ; Wettervorhersage ; Methode
    Description / Table of Contents: 1 Einführung -- 2 Wetterbeobachtungen -- 3 Mathematische Beschreibung atmosphärischer Prozesse -- 4Grundlagen der Dynamik und Thermodynamik -- 5 Kinematik horizontaler Strömungen -- 6 Die quasigeostrophische Theorie -- 7 Die potentielle Vorticity -- 8 Die globale Zirkulation -- 9 Rossby-Wellen -- 10 Zyklonen und Antizyklonen -- 11 Fronten und Frontalzonen -- 12 Mesokalige meteorologische Prozesse -- Literatur.
    Type of Medium: Online Resource
    Pages: Online-Ressource (XIV, 534 S. 184 Abb., 78 Abb. in Farbe, online resource)
    Edition: 2. Aufl. 2016
    ISBN: 9783662481950
    Series Statement: SpringerLink
    RVK:
    RVK:
    RVK:
    Language: German
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Europa ; Synoptik
    Type of Medium: Book
    Pages: xiv, 534 Seiten , Illustrationen, Diagramme, Karten , 24,2 cm
    Edition: 2. Auflage
    ISBN: 3662481944 , 9783662481943
    DDC: 551.654
    RVK:
    RVK:
    RVK:
    RVK:
    Language: German
    Note: Einführung -- Wetterbeobachtungen -- Mathematische Beschreibung atmosphärischer Prozesse -- Grundlagen der Dynamik und Thermodynamik -- Kinematik horizontaler Strömungen -- Die quasigeostrophische Theorie -- Die potentielle Vorticity -- Die globale Zirkulation -- Rossby-Wellen -- Zyklonen und Antizyklonen -- Fronten und Frontalzonen -- Mesoskalige meteorologische Prozesse
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Cambridge :Cambridge University Press,
    Keywords: Atmospheric radiation. ; Electronic books.
    Description / Table of Contents: Written for graduate students and researchers in meteorology and related sciences, this book presents the theory and applications of radiative transfer in the atmosphere. Problems of varying degrees of difficulty are included at the end of each chapter, allowing readers to further their understanding of the subject.
    Type of Medium: Online Resource
    Pages: 1 online resource (498 pages)
    Edition: 1st ed.
    ISBN: 9780511273377
    DDC: 551.527
    Language: English
    Note: Cover -- Half-title -- Title -- Copyright -- Dedication -- Contents -- Preface -- 1 Introduction -- 1.1 The atmospheric radiation field -- 1.2 The mean global radiation budget of the Earth -- 1.3 Solar-terrestrial relations -- 1.3.1 The equation of time -- 1.3.2 Geographical coordinates and the solar position -- 1.3.3 Long-term variations of the Earth's orbital parameters -- 1.4 Basic definitions of radiative quantities -- 1.5 The net radiative flux density vector -- 1.6 The interaction of radiation with matter -- 1.6.1 Absorption -- 1.6.2 Scattering -- 1.6.3 Emission -- 1.7 Problems -- 2 The radiative transfer equation -- 2.1 Eulerian derivation of the radiative transfer equation -- 2.1.1 The exchange of photons -- 2.1.2 The absorption of photons -- 2.1.3 The scattering of photons -- 2.1.4 The emission rate -- 2.1.5 The budget equation of the photon distribution function -- 2.2 The direct-diffuse splitting of the radiance field -- 2.3 The radiatively induced temperature change -- 2.4 The radiative transfer equation for a horizontally homogeneous atmosphere -- 2.5 Splitting of the radiance field into upwelling and downwelling radiation -- 2.6 The solution of the radiative transfer equation for a horizontally homogeneous atmosphere -- 2.6.1 The scattering atmosphere -- 2.6.2 The nonscattering atmosphere -- 2.7 Radiative flux densities and heating rates -- 2.7.1 The scattering atmosphere -- 2.7.2 The nonscattering atmosphere -- 2.8 Appendix -- 2.8.1 Local thermodynamic equilibrium -- 2.9 Problems -- 3 Principles of invariance -- 3.1 Definitions of the scattering and transmission functions -- 3.2 Diffuse reflection in a semi-infinite atmosphere -- 3.3 Chandrasekhar's four statements of the principles of invariance -- 3.4 The inclusion of surface reflection -- 3.5 Diffuse reflection and transmission for isotropic scattering -- 3.6 Problems. , 4 Quasi-exact solution methods for the radiative transfer equation -- 4.1 The matrix operator method -- 4.1.1 Derivation of the addition theorems -- 4.1.2 The optical properties of a homogeneous elementary layer -- 4.1.3 The doubling algorithm -- 4.1.4 Inhomogeneous atmospheres -- 4.2 The successive order of scattering method -- 4.3 The discrete ordinate method -- 4.4 The spherical harmonics method -- 4.5 The finite difference method -- 4.5.1 Vertical discretization in the finite difference method -- 4.5.2 Treatment of the boundary conditions -- 4.5.3 Computation of mean radiances and flux densities -- 4.6 The Monte Carlo method -- 4.6.1 Determination of photon paths -- 4.6.2 Treatment of absorption -- 4.7 Appendix -- 4.7.1 The reflection matrix at the ground -- 4.8 Problems -- 5 Radiative perturbation theory -- 5.1 Adjoint formulation of the radiative transfer equation -- 5.2 Boundary conditions -- 5.2.1 Vacuum boundary conditions -- 5.2.2 Boundary conditions for a reflecting surface -- 5.2.3 Inclusion of surface reflection in the formulation of the radiances -- 5.3 Radiative effects -- Example I -- Example II -- Example III -- 5.4 Perturbation theory for radiative effects -- 5.4.1 Basic perturbation theory -- 5.4.2 An alternative formulation of the radiative effect -- 5.4.3 Evaluation of the perturbation integral -- 5.5 Appendix -- 5.5.1 Linear operator and its adjoint -- 5.5.2 Superposition formula for the inclusion of Lambertian surface reflection -- 5.6 Problems -- 6 Two-stream methods for the solution of the radiative transfer equation -- 6.1 Delta-scaling of the phase function -- 6.2 The two-stream radiative transfer equation -- 6.3 Different versions of two-stream methods -- 6.3.1 Two-stream method with hemispheric isotropy -- 6.3.2 The Eddington approximation -- 6.3.3 Discrete ordinates formalism -- 6.3.4 Practical improved flux method. , 6.4 Analytical solution of the two-stream methods for homogeneous layer -- 6.5 Approximate treatment of scattering in the infrared spectral region -- 6.6 Approximations for partial cloud cover -- 6.6.1 Partial cloud cover with random overlap -- 6.6.2 Partial cloud cover with maximum overlap -- 6.7 The classical emissivity approximation -- 6.8 Radiation charts -- 6.9 Radiative equilibrium -- 6.10 Problems -- 7 Transmission in individual spectral lines and in bands of lines -- 7.1 The shape of single spectral lines -- 7.1.1 The Lorentz line -- 7.1.2 The thermal Doppler line -- 7.1.3 The Voigt profile -- 7.2 Band models -- 7.2.1 Mean absorption in a single Lorentz line -- 7.2.2 Band model for nonoverlapping lines -- 7.2.3 Random band models -- Goody's exponential model -- Godson's inverse power model -- The Malkmus model -- 7.2.4 Elsasser's regular model -- 7.2.5 The Schnaidt model -- 7.3 The fitting of transmission functions -- 7.3.1 Exponential sum-fitting of transmissions -- 7.3.2 The k-distribution method -- Basic illustration of the k-distribution method -- Algorithm for computing the k-distribution -- The cumulative k-distribution -- 7.3.3 The correlated k-distribution method -- 7.3.4 The k-distribution method for special situations -- Two overlapping gases -- Gray absorption coefficient -- Regular band of nonoverlapping rectangular lines -- Regular band of triangular lines -- Regular band of nonoverlapping Lorentz lines -- Single scattering properties for inhomogeneous atmospheres -- 7.4 Transmission in inhomogeneous atmospheres -- 7.4.1 One-parameter scaling -- 7.4.2 The two-parameter scaling technique of Curtis and Godson -- 7.5 Results -- 7.6 Appendix -- 7.6.1 Maxwell's velocity distribution and the mean molecular velocity -- 7.6.2 Original derivation of the Ladenburg and Reiche function. , 7.6.3 The Mittag-Leffler theorem and the Elsasser model -- Step 1 -- Step 2 -- 7.7 Problems -- 8 Absorption by gases -- 8.1 Introduction -- 8.2 Molecular vibrations -- 8.2.1 Two coupled harmonic oscillators -- 8.2.2 Review of physical principles -- 8.2.3 Linear triatomic molecules -- 8.2.4 Nonlinear triatomic molecules -- 8.3 Some basic principles from quantum mechanics -- 8.3.1 Stationary and coherent states -- (i) Stationary states -- (ii) Coherent states -- 8.3.2 The Schrödinger equation -- 8.3.3 Hamilton operator for a charged particle in an electromagnetic field -- 8.3.4 The interaction Hamiltonian -- 8.3.5 Computation of transition probabilities -- 8.3.6 Einstein transition probabilities -- 8.3.7 Line intensities -- 8.4 Vibrations and rotations of molecules -- 8.4.1 The harmonic oscillator -- 8.4.2 Vibration of diatomic molecules -- 8.4.3 Vibration of polyatomic molecules -- 8.4.4 Rotation of diatomic molecules -- 8.4.5 Vibration-rotation of diatomic molecules -- 8.5 Matrix elements, selection rules and line intensities -- 8.5.1 The harmonic oscillator -- 8.5.2 The rigid rotator -- 8.6 Influence of thermal distribution of quantum states on line intensities -- 8.7 Rotational energy levels of polyatomic molecules -- 8.7.1 Linear molecules -- 8.7.2 Symmetric top molecules -- 8.7.3 Spherical top molecules -- 8.7.4 Asymmetric top molecules -- 8.8 Appendix -- 8.8.1 The Hamilton function -- 8.8.2 Macroscopic fields and Maxwell's equations -- 8.9 Problems -- 9 Light scattering theory for spheres -- 9.1 Introduction -- 9.2 Maxwell's equations -- 9.3 Boundary conditions -- 9.4 The solution of the wave equation -- 9.4.1 Solution of the scalar wave equation in spherical coordinates -- 9.4.2 Solution of the vector wave equation in spherical coordinates -- 9.5 Mie's scattering problem -- 9.5.1 The incoming wave -- 9.5.2 The scattered and the interior waves. , 9.5.3 Rayleigh scattering -- 9.6 Material characteristics and derived directional quantities -- 9.6.1 Extinction, scattering and absorption coefficients -- 9.6.2 The scattering function and the scattering phase function -- 9.7 Selected results from Mie theory -- 9.8 Solar heating and infrared cooling rates in cloud layers -- 9.9 Problems -- 10 Effects of polarization in radiative transfer -- 10.1 Description of elliptic, linear and circular polarization -- 10.1.1 Linear polarization -- 10.1.2 Circular polarization -- 10.2 The Stokes parameters -- 10.3 The scattering matrix -- 10.3.1 Representation of the electric vector in the scattering plane -- 10.3.2 Transformation of the Stokes vector -- 10.4 The vector form of the radiative transfer equation -- 10.5 Problems -- 11 Remote sensing applications of radiative transfer -- 11.1 Introduction -- 11.2 Remote sensing based on short- and long-wave radiation -- 11.2.1 Methods based on the extinction of solar radiation -- Example: determination of the aerosol and ozone optical depth -- 11.2.2 Methods based on thermal emission -- (1) Nadir-looking instrument -- (2) Ground-based observations -- 11.3 Inversion of the temperature profile -- 11.3.1 Direct linear inversion -- 11.3.2 Linear inversion with constraints -- 11.3.3 Chahine's relaxation method -- 11.3.4 Smith's iterative inversion method -- 11.4 Radiative perturbation theory and ozone profile retrieval -- 11.5 Appendix -- 11.5.1 Example for an ill-posed inversion problem -- 11.6 Problems -- 12 Influence of clouds on the climate of the Earth -- 12.1 Cloud forcing -- 12.2 Cloud feedback in climate models -- 12.2.1 Cloud feedback in response to doubling atmospheric CO2 -- 12.2.2 Other trace gases -- 12.2.3 Liquid water and cloud microphysics feedback -- 12.2.4 Climatic impact due to aerosols -- 12.3 Problems -- Answers to problems -- Chapter 1 -- Chapter 2. , Chapter 3.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Cambridge :Cambridge University Press,
    Keywords: Meteorology. ; Electronic books.
    Description / Table of Contents: Complete with numerous exercise sets and solutions, Dynamics of the Atmosphere is written for advanced undergraduate and graduate students of meteorology and atmospheric science. The book consists of two parts, the first presenting the mathematical tools needed for a thorough understanding of dynamic atmospheric phenomena discussed in the second part.
    Type of Medium: Online Resource
    Pages: 1 online resource (739 pages)
    Edition: 1st ed.
    ISBN: 9780511202957
    DDC: 551.5
    Language: English
    Note: Cover -- Half-title -- Title -- Copyright -- Dedication -- Contents -- Preface -- Part 1 Mathematical tools -- M1 Algebra of vectors -- M1.1 Basic concepts and definitions -- M1.2 Reference frames -- M1.3 Vector multiplication -- M1.3.1 The scalar product of two vectors -- M1.3.2 The vector product of two vectors -- M1.3.3 The dyadic representation, the general product of two vectors -- M1.3.4 The scalar triple product -- M1.3.5 The vectorial triple product -- M1.3.6 The scalar product of a vector with a dyadic -- M1.3.7 Products involving four vectors -- M1.4 Reciprocal coordinate systems -- M1.5 Vector representations -- M1.6 Products of vectors in general coordinate systems -- M1.7 Problems -- M2 Vector functions -- M2.1 Basic definitions and operations -- M2.2 Special dyadics -- M2.2.1 The conjugate dyadic -- M2.2.2 The symmetric dyadic -- M2.2.3 The antisymmetric or skew-symmetric dyadic -- M2.2.4 The adjoint dyadic -- M2.2.5 The reciprocal dyadic -- M2.3 Principal-axis transformation of symmetric tensors -- M2.4 Invariants of a dyadic -- M2.4.1 The first scalar of a dyadic -- M2.4.2 The vector of a dyadic -- M2.4.3 The second scalar of a dyadic -- M2.4.4 The third scalar of a dyadic -- M2.5 Tensor algebra -- M2.6 Problems -- M3 Differential relations -- M3.1 Differentiation of extensive functions -- M3.2 The Hamilton operator in generalized coordinate systems -- M3.3 The spatial derivative of the basis vectors -- M3.4 Differential invariants in generalized coordinate systems -- M3.4.1 The first scalar or the divergence of the local dyadic… -- M3.4.2 The Laplacian of a scalar field function -- M3.4.3 The vector of the local dyadic… -- M3.5 Additional applications -- M3.6 Problems -- M4 Coordinate transformations -- M4.1 Transformation relations of time-independent coordinate systems -- M4.1.1 Introduction. , M4.1.2 Transformation of basis vectors and coordinate differentials -- M4.1.3 Transformation of vectors and dyadics -- M4.2 Transformation relations of time-dependent coordinate systems -- M4.2.1 The addition theorem of the velocities -- M4.2.2 Orthogonal q systems -- M4.2.3 The generalized vertical coordinate -- M4.3 Problems -- M5 The method of covariant differentiation -- M5.1 Spatial differentiation of vectors and dyadics -- M5.2 Time differentiation of vectors and dyadics -- M5.3 The local dyadic of v -- M5.4 Problems -- M6 Integral operations -- M6.1 Curves, surfaces, and volumes in the general q system -- M6.2 Line integrals, surface integrals, and volume integrals -- M6.3 Integral theorems -- M6.3.1 Stokes' integral theorem -- M6.3.2 Gauss' divergence theorem -- M6.4 Fluid lines, surfaces, and volumes -- M6.5 Time differentiation fluid integrals -- M6.5.1 Time differentiation of fluid line integrals -- M6.5.2 Time differentiation of fluid surface integrals -- M6.5.3 Time differentiation of fluid volume integrals -- M6.6 The general form of the budget equation -- M6.6.1 The budget equation for the partial masses of atmospheric air -- M6.6.2 The first law of thermodynamics -- M6.7 Gauss' theorem and the Dirac delta function -- M6.8 Solution of Poisson's differential equation -- M6.9 Appendix: Remarks on Euclidian and Riemannian spaces -- M6.10 Problems -- M7 Introduction to the concepts of nonlinear dynamics -- M7.1 One-dimensional flow -- M7.1.1 Fixed points and stability -- M7.1.2 Bifurcation -- M7.1.2.1 Saddle-node bifurcation -- M7.1.2.2 Transcritical bifurcation -- M7.1.2.3 Pitchfork bifurcation -- M7.2 Two-dimensional flow -- M7.2.1 Linear stability analysis -- M7.2.2 Classification of linear systems -- M7.2.3 Two-dimensional nonlinear systems -- M7.2.4 Limit cycles -- M7.2.5 Hopf bifurcation -- M7.2.6 The Liapunov function. , M7.2.7 Fractal dimensions -- Part 2 Dynamics of the atmosphere -- 1 The laws of atmospheric motion -- 1.1 The equation of absolute motion -- 1.2 The energy budget in the absolute reference system -- 1.3 The geographical coordinate system -- 1.3.1 Operations involving the rotational velocity vOmega -- 1.3.1.1 The divergence of v in the geographical coordinate system -- 1.3.1.2 Rotation and the vector gradient of vOmega -- 1.3.2 The centrifugal potential -- 1.3.3 The budget operator -- 1.4 The equation of relative motion -- 1.5 The energy budget of the general relative system -- 1.6 The decomposition of the equation of motion -- 1.7 Problems -- 2 Scale analysis -- 2.1 An outline of the method -- 2.2 Practical formulation of the dimensionless flow numbers -- 2.3 Scale analysis of large-scale frictionless motion -- 2.4 The geostrophic wind and the Euler wind -- 2.5 The equation of motion on a tangential plane -- 2.6 Problems -- 3 The material and the local description of flow -- 3.1 The description of Lagrange -- 3.2 Lagrange's version of the continuity equation -- 3.2.1 Preliminaries -- 3.2.2 The mass-conservation equation in the Lagrangian form -- 3.3 An example of the use of Lagrangian coordinates -- 3.3.1 General remarks -- 3.3.2 The thermo-hydrodynamic equations -- 3.3.3 Difference approximations -- 3.3.4 Initial values and boundary conditions -- 3.3.4.1 Approximate determination of… -- 3.3.4.2 The interpolated velocity…on the trajectory -- 3.3.5 The numerical stability condition -- 3.4 The local description of Euler -- 3.5 Transformation from the Eulerian to the Lagrangian system -- 3.6 Problems -- 4 Atmospheric flow fields -- 4.1 The velocity dyadic -- 4.1.1 The three-dimensional velocity dyadic -- 4.1.2 The two-dimensional velocity dyadic -- 4.2 The deformation of the continuum -- 4.2.1 The representation of the wind field. , 4.2.2 Flow patterns and stability -- 4.3 Individual changes with time of geometric fluid configurations -- 4.3.1 The relative change of the material line element -- 4.3.2 The directional change of the material line element -- 4.3.3 The change in volume of a rectangular fluid box -- 4.3.4 Two-dimensional examples -- 4.4 Problems -- 5 The Navier-Stokes stress tensor -- 5.1 The general stress tensor -- 5.1.1 Volume forces -- 5.1.2 Surface forces -- 5.2 Equilibrium conditions in the stress field -- 5.3 Symmetry of the stress tensor -- 5.4 The frictional stress tensor and the deformation dyadic -- 5.5 Problems -- 6 The Helmholtz theorem -- 6.1 The three-dimensional Helmholtz theorem -- 6.2 The two-dimensional Helmholtz theorem -- 6.3 Problems -- 7 Kinematics of two-dimensional flow -- 7.1 Atmospheric flow fields -- 7.2 Two-dimensional streamlines and normals -- 7.2.1 Two-dimensional streamlines -- 7.2.2 Construction of normals -- 7.3 Streamlines in a drifting coordinate system -- 7.4 Problems -- 8 Natural coordinates -- 8.1 Introduction -- 8.2 Differential definitions of the coordinate lines -- 8.3 Metric relationships -- 8.4 Blaton's equation -- 8.5 Individual and local time derivatives of the velocity -- 8.6 Differential invariants -- 8.6.1 The horizontal divergence of the velocity -- 8.6.2 Vorticity or the vertical component of… -- 8.6.3 The Jacobian operator and the Laplacian -- 8.7 The equation of motion for frictionless horizontal flow -- 8.8 The gradient wind relation -- 8.9 Problems -- 9 Boundary surfaces and boundary conditions -- 9.1 Introduction -- 9.2 Differential operations at discontinuity surfaces -- 9.3 Particle invariance at boundary surfaces, displacement velocities -- 9.4 The kinematic boundary-surface condition -- 9.4.1 External boundary surfaces -- 9.4.2 Internal boundary surfaces. , 9.4.3 The generalized vertical velocity at boundary surfaces -- 9.5 The dynamic boundary-surface condition -- 9.6 The zeroth-order discontinuity surface -- 9.6.1 The inclination of the zeroth-order DS -- 9.6.2 A discontinuity surface of zeroth-order in the geostrophic wind field -- 9.7 An example of a first-order discontinuity surface -- 9.8 Problems -- 10 Circulation and vorticity theorems -- 10.1 Ertel's form of the continuity equation -- 10.2 The baroclinic Weber transformation -- 10.3 The baroclinic Ertel-Rossby invariant -- 10.4 Circulation and vorticity theorems for frictionless baroclinic flow -- 10.4.1 A general baroclinic vortex theorem -- 10.4.2 Ertel's vortex theorem -- 10.4.3 Ertel's conservation theorem, potential vorticity -- 10.4.4 The general vorticity theorem -- 10.4.5 Rossby's formulation of the potential vorticity -- 10.4.6 Helmholtz's baroclinic vortex theorem -- 10.4.7 Thomson's and Bjerkness' baroclinic circulation theorems -- 10.4.8 Interpretation of Bjerkness' circulation theorem -- 10.5 Circulation and vorticity theorems for frictionless barotropic flow -- 10.5.1 The barotropic Ertel-Rossby invariant -- 10.5.2 Barotropic vortex theorems of Ertel, Helmholtz, and Thomson -- 10.5.3 Vortex lines and vortex tubes -- 10.5.4 The vorticity theorem for the barotropic atmosphere -- 10.6 Problems -- 11 Turbulent systems -- 11.1 Simple averages and fluctuations -- 11.2 Weighted averages and fluctuations -- 11.3 Averaging the individual time derivative and the budget operator -- 11.4 Integral means -- 11.5 Budget equations of the turbulent system -- 11.6 The energy budget of the turbulent system -- 11.7 Diagnostic and prognostic equations of turbulent systems -- 11.8 Production of entropy in the microturbulent system -- 11.8.1 Scalar fluxes -- 11.8.2 Vectorial fluxes -- 11.8.3 The scalar phenomenological equations. , 11.8.4 The vectorial phenomenological equations.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: Forschungsbericht
    Type of Medium: Online Resource
    Pages: Online-Ressource (17 p. = 641 KB) , graphs
    Edition: [Elektronische Ressource]
    Language: German
    Note: nIndex. - Contract BMBF 07AF214/9 , Differences between the printed and electronic version of the document are possible , Also available as printed version , Systemvoraussetzungen: Acrobat reader.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: Forschungsbericht
    Description / Table of Contents: Radiation fog, microphysics, dry deposition, leaf wetness, multi-phase chemistry
    Type of Medium: Online Resource
    Pages: Online-Ressource (26 p. = 755 KB) , graphs
    Edition: [Elektronische Ressource]
    Language: German
    Note: Contract BMBF 07 AF 301. - Differences between the printed and electronic version of the document are possible. - nIndex p. 24. - nBibliography p. 25 - 26. - Engl. title: A chemical microphysical fog model for the description of wet deposition of aerosols and atmospheric trace gases on vegetation , Also available as printed version , Systemvoraussetzungen: Acrobat reader.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Keywords: Forschungsbericht
    Type of Medium: Online Resource
    Pages: Online-Ressource (84 S., 13,28 MB) , Ill., graph. Darst.
    Language: German
    Note: Förderkennzeichen BMBF 20V0801C. - Verbund-Nr. 01066994 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Systemvoraussetzungen: Acrobat reader.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 56 (1991), S. 1-31 
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A one-dimensional model of radiation fog with detailed microphysics is presented. Aerosols and cloud droplets are treated in a joint two-dimensional size distribution. Radiative fluxes are calculated as functions of the radiative properties of the time-dependent particle spectra. The droplet growth equation is solved by considering radiative effects. Turbulence is treated by means of a higher order closure model. The interaction between the atmosphere and the earth's surface is explicitly simulated. Three numerical sensitivity studies are performed to investigate the impact of the different physico-chemical properties of urban, rural and maritime aerosols on fog formation. Numerical results elucidate that depending on the aerosol type used, the resulting fog events are completely different. This is particularly true for the times of fog formation and dissipation as well as for the liquid water content and supersaturations within the fogs. In the activated part of the particle spectra, the aerosol mass is very inhomogeneously distributed. The maxima of the curves do not coincide with the maxima of the corresponding liquid water distributions.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-05-20
    Print ISSN: 0941-2948
    Electronic ISSN: 1610-1227
    Topics: Geography , Physics
    Published by Schweizerbart
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...