GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-03-16
    Keywords: ARK-XVI/1; AWI_BioOce; Biological Oceanography @ AWI; Chlorophyll a; CTD/Rosette; CTD-RO; Date/Time of event; DEPTH, water; Elevation of event; Event label; Latitude of event; Longitude of event; MUC; MULT; MultiCorer; Multiple investigations; Polarstern; PS57/003; PS57/004; PS57/006; PS57/007; PS57/009; PS57/012; PS57/015; PS57/017; PS57/020; PS57/024; PS57/028; PS57/032; PS57/038; PS57/043; PS57/046; PS57/048; PS57/049; PS57/053; PS57/057; PS57/058; PS57/059; PS57/060; PS57/061; PS57/062; PS57/063; PS57/073; PS57/074; PS57/094; PS57/110; PS57/111; PS57/114; PS57/115; PS57/116; PS57/117; PS57/118; PS57/120; PS57/121; PS57/122; PS57/124; PS57/126; PS57/128; PS57/130-2; PS57/131-1; PS57/132; PS57/134; PS57/136-1; PS57/139; PS57 ARKTIEF
    Type: Dataset
    Format: text/tab-separated-values, 271 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: Combining proxy information and climate model simulations reconciles these sources of information about past climates. This, in turn, strengthens our understanding of past climatic changes. The analogue or proxy surrogate reconstruction method is a computationally cheap data assimilation approach, which searches in a pool of simulated climate states the best fit to proxy data. We use the approach to reconstruct European summer mean temperature from the 13th century until present using the Euro 2k set of proxy records and a pool of global climate simulation output fields. Our focus is on quantifying the uncertainty of the reconstruction, because previous applications of the analogue method rarely provided uncertainty ranges. We show several ways of estimating reconstruction uncertainty for the analogue method, which take into account the non-climate part of the variability in each proxy record. In general, our reconstruction agrees well at multi-decadal timescales with the Euro 2k reconstruction, which was conducted with two different statistical methods and no information from model simulations. In both methodological approaches, the decades around the year 1600 CE were the coldest. However, the approaches disagree on the warmest pre-industrial periods. The reconstructions from the analogue method also represent the local variations of the observed proxies. The diverse uncertainty estimates obtained from our analogue approaches can be locally larger or smaller than the estimates from the Euro 2k effort. Local uncertainties of the temperature reconstructions tend to be large in areas that are poorly covered by the proxy records. Uncertainties highlight the ambiguity of field-based reconstructions constrained by a limited set of proxies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Earth System Science Data, 11 (3). pp. 1129-1152.
    Publication Date: 2022-01-31
    Description: Climate reconstructions are means to extract the signal from uncertain paleo-observations, so-called proxies. It is essential to evaluate these reconstructions to understand and quantify their uncertainties. Similarly, comparing climate simulations and proxies requires approaches to bridge the temporal and spatial differences between both and to address their specific uncertainties. One way to achieve these two goals is so-called pseudoproxies. These are surrogate proxy records within the virtual reality of a climate simulation. They in turn depend on an understanding of the uncertainties of the real proxies including the noise characteristics disturbing the original environmental signal. Common pseudoproxy approaches so far concentrate on data with high temporal resolution over the last approximately 2000 years. Here we provide a simple but flexible noise model for potentially low-resolution sedimentary climate proxies for temperature on millennial timescales, the code for calculating a set of pseudoproxies from a simulation, and one example of pseudoproxies. The noise model considers the influence of other environmental variables, a dependence on the climate state, a bias due to changing seasonality, modifications of the archive (for example bioturbation), potential sampling variability, and a measurement error. Model, code, and data allow us to develop new ways of comparing simulation data with proxies on long timescales. Code and data are available at https://doi.org/10.17605/OSF.IO/ZBEHX (Bothe et al., 2018).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-01-31
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PAGES
    In:  Past Global Change Magazine, 29 (1). p. 59.
    Publication Date: 2021-11-25
    Description: Data is an important foundation of scientific progress. It allows us to contrast hypotheses with observational evidence. Sharing and providing data openly have a long tradition in paleoenvironmental research, supported by repositories such as WDS-Paleo, PANGAEA,and Neotoma.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  (Submitted) EarthArXiv .
    Publication Date: 2022-01-12
    Description: We do not expect simulations and reconstructions of past climate change to agree on the exact evolution of past climate variations. Simulations with sophisticated climate models present spatially discrete but complete estimates, which are consistent relative to the implemented physics and their uncertain forcing data. Reconstruction methods statistically infer past changes from natural archives who reacted to and recorded more than one external influence and, thus, carry an uncertainty by construction. However, comparison of both data sources is relevant not least as it addresses the disagreements between the data. This manuscript describes the disagreement of a regional simulation with an ensemble of regional reconstructions but also highlights some agreement. The results emphasize the congruence in modelling and reconstructing past changes. Besides the expected disagreement both sources of information about past climate changes show some potential agreement in low frequency variability, time-series properties, and spatial covariability. While we cannot aim for perfect matches we can consider simulations and reconstructions as estimates of probabilities of past changes if their general properties agree.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: Inferences about climate states and climate variability of the Holocene and the deglaciation rely on sparse paleo-observational proxy data. Combining these proxies with output from climate simulations is a means for increasing the understanding of the climate throughout the last tens of thousands of years. The analogue method is one approach to do this. The method takes a number of sparse proxy records and then searches within a pool of more complete information (e.g., model simulations) for analogues according to a similarity criterion. The analogue method is non-linear and allows considering the spatial covariance among proxy records. Beyond the last two millennia, we have to rely on proxies that are not only sparse in space but also irregular in time and with considerably uncertain dating. This poses additional challenges for the analogue method, which have seldom been addressed previously. The method has to address the uncertainty of the proxy-inferred variables as well as the uncertain dating. It has to cope with the irregular and non-synchronous sampling of different proxies. Here, we describe an implementation of the analogue method including a specific way of addressing these obstacles. We include the uncertainty in our proxy estimates by using “ellipses of tolerance” for tuples of individual proxy values and dates. These ellipses are central to our approach. They describe a region in the plane spanned by proxy dimension and time dimension for which a model analogue is considered to be acceptable. They allow us to consider the dating as well as the data uncertainty. They therefore form the basic criterion for selecting valid analogues. We discuss the benefits and limitations of this approach. The results highlight the potential of the analogue method to reconstruct the climate from the deglaciation up to the late Holocene. However, in the present case, the reconstructions show little variability of their central estimates but large uncertainty ranges. The reconstruction by analogue provides not only a regional average record but also allows assessing the spatial climate field compliant with the used proxy predictors. These fields reveal that uncertainties are also locally large. Our results emphasize the ambiguity of reconstructions from spatially sparse and temporally uncertain, irregularly sampled proxies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...