GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of volcanology and geothermal research, Amsterdam [u.a.] : Elsevier Science, 1976, 189(2010), 1/2, Seite 57-80, 0377-0273
    In: volume:189
    In: year:2010
    In: number:1/2
    In: pages:57-80
    Type of Medium: Online Resource
    Pages: Ill., graph. Darst
    ISSN: 0377-0273
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 117 (1994), S. 263-278 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Dikii Greben' Volcano is the largest modern volcano with silicic rocks in the Kurile-Kamchatka island arc. It consists of many domes and lava flows of rhyodacite, dacite and andesite which were erupted in a reverse differentiation sequence. Non-equilibrium phenocryst assemblages (quartz + Mg-rich olivine, An-rich + An-poor plagioclase etc.), abundance of chilled mafic pillows in the dacites and andesites, and linear variations of rock compositions in binary plots are considered as mineralogical, textural and geochemical evidence for mixing. Mafic pillows in volcanics have a lower density (because of high porosity) and contain the same non-equilibrium phenocryst assemblages as the host rocks. Their groundmass contains skeletal microlites of plagioclase and amphibole proving that the groundmass as well as the pillows themselves formed from a water-rich basaltic magma at depth. They are considered as supercooled, vesiculated floating drops of a hot hybrid layer in the magma chamber which formed after refilling. The lower density of the inclusions allows them to float in the host magma and to concentrate at the top of the chamber prior to eruption. Magma mingling was effected by mechanical disintegration of the inclusions in the host magma during eruption. The rhyodacitic and basic end-members of the mixing series cannot be linked by low-P fractionation though high-P, amphibole-rich fractionation is not excluded.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-04-21
    Description: Generation of large-volume rhyolites in the shallow crust is an important, yet enigmatic, process in the Snake River Plain and worldwide. Here, we present data for voluminous rhyolites from the 6·6–4·5 Ma Heise volcanic field in eastern Idaho. Heise is arguably the best site to evaluate shallow rhyolite genesis in the Snake River Plain; it is the youngest complete record of caldera cluster volcanism along the Yellowstone hotspot track and it culminated with the eruption of the most voluminous low- 18 O rhyolite known on Earth: the 1800 km 3 Kilgore Tuff ( 18 O = 3·4). Such low- 18 O values fingerprint meteoric waters, and thus the shallow crust. New oxygen isotope data for phenocrysts, obtained by laser fluorination, correspond to a low- 18 O magma value of 3·4 ± 0·1 (2 standard error) for Kilgore Tuff samples erupted 〉100 km apart; however, ion microprobe data for single zircon crystals show significant diversity, with 18 O values that range from –1·3 to 6·1. U–Pb zircon ages, mineral chemistry, whole-rock major and trace element geochemistry, Sr and Nd isotope data, and magmatic (liquidus) temperatures are similar and/or overlapping for all studied samples of the Kilgore Tuff. Normal- 18 O Heise tuff units that preceded the Kilgore Tuff define a temporal compositional trend in trace element concentrations, trace element ratios, and Sr and Nd isotope ratios that is consistent with fractional crystallization from a common reservoir, whereas low- 18 O Kilgore cycle units have compositions that define a sharp reversal in the temporal trend back towards the composition of the first normal- 18 O Heise tuff (6·62 Ma Blacktail Creek Tuff). The data support derivation of the voluminous low- 18 O Kilgore Tuff from remelting of hydrothermally altered ( 18 O depleted) intracaldera and subvolcanic portions of the Blacktail Creek Tuff. Single pockets of melt with variable low- 18 O values were assembled and homogenized on a caldera-wide scale prior to the climactic Kilgore Tuff eruption, and the best record of this process is provided by the 18 O diversity in Kilgore Tuff zircons. Temporal trends of oxygen isotopic depletion and recovery in rhyolite eruptions of the Heise volcanic field are clearly linked to caldera collapse events, and remarkably consistent with trends in the Yellowstone Plateau volcanic field. At Heise and Yellowstone, magmatic 18 O values can be predicted on the basis of cumulative eruptive volumes, with a decrease in 18 O by ~1 for every ~1000 km 3 of erupted rhyolite. The Kilgore Tuff of the Heise volcanic field has the same timing, magnitude of 18 O depletion, and cumulative eruptive volume as the youngest phase of voluminous rhyolitic eruptions in the Yellowstone Plateau volcanic field, indicating that the Kilgore Tuff may serve as a useful analog for these and perhaps other large-volume low- 18 O rhyolites on Earth.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-23
    Description: We measured oxygen isotope compositions of 34 adakites, high-Mg andesites, and lavas suspected to contain abundant slab and sediment melts from the Western and Central Aleutians, the Andes, Panama, Fiji, Kamchatka, Setouchi (Japan), and the Cascades. This suite covers much of the diversity of arc lavas previously hypothesized to contain abundant ‘slab’ melts. Measured and calculated values of δ18O for olivine phenocrysts in these samples vary between 4.88‰ and 6.78‰, corresponding to calculated melt values of 6.36‰ to 8.17‰. Values of δ18O for these samples are correlated with other geochemical parameters having petrogenetic significance, including Sr/Y, La/Yb, 87Sr/86Sr, and 143Nd/144Nd. Archetypical adakites from Adak Island (Central Aleutian) and Cook Island (Andean Austral zone), previously interpreted to be nearly pure melts of basaltic and gabbroic rocks in subducting slabs, have values of δ18O slightly higher than those of normal mid-ocean-ridge basalts, and in oxygen isotope equilibrium with typical mantle peridotite (i.e., their subtle 18O enrichment reflects their Si-rich compositions and low liquidus temperatures, not 18O-rich sources). Other primitive adakites from Panama and Fiji show only subtle sub-per mil enrichments in the source. This finding appears to rule out the hypothesis that end-member adakites are unmodified partial melts of basaltic rocks and/or sediments in the top (upper 1–2 km) of the subducted slab, which typically have δ18O values of ca. 9–20‰, and also appears to rule out them being partial melts of hydrothermally altered gabbros from the slab interior, which typically have δ18O values of ca. 2–5‰. One explanation of this result is that adakites are mixtures of partial melts from several different parts of the slab, so that higher- and lower-δ18O components average out to have no net difference from average mantle. Alternatively, adakites might be initially generated with more extreme δ18O values, but undergo isotopic exchange with the mantle wedge before eruption. Finally, adakites might not be slab melts at all, and instead come from differentation and/or partial melting processes near the base of the arc crust in the over-riding plate. High-Mg andesites and Setouchi lavas are commonly higher in δ18O than equilibrium with the mantle, consistent with their containing variable amounts of partial melts of subducted sediments (as we conclude for Setouchi lavas), slab-derived aqueous fluid (as we conclude for the Cascades) and/or crustal contaminants from the over-riding plate (as we conclude for Kamchatka).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-08-09
    Description: The Kamchatka Peninsula in far eastern Russia represents the most volcanically active arc in the world in terms of magma production and the number of explosive eruptions. We investigate large-scale silicic volcanism in the past several million years and present new geochronologic results from major ignimbrite sheets exposed in Kamchatka. These ignimbrites are found in the vicinity of morphologically-preserved rims of partially eroded source calderas with diameters from ∼ 2 to ∼ 30 km and with estimated volumes of eruptions ranging from 10 to several hundred cubic kilometers of magma. We also identify and date two of the largest ignimbrites: Golygin Ignimbrite in southern Kamchatka (0.45 Ma), and Karymshina River Ignimbrites (1.78 Ma) in south-central Kamchatka. We present whole-rock geochemical analyses that can be used to correlate ignimbrites laterally. These large-volume ignimbrites sample a significant proportion of remelted Kamchatkan crust as constrained by the oxygen isotopes. Oxygen isotope analyses of minerals and matrix span a 3‰ range with a significant proportion of moderately low-δ18O values. This suggests that the source for these ignimbrites involved a hydrothermally-altered shallow crust, while participation of the Cretaceous siliceous basement is also evidenced by moderately elevated δ18O and Sr isotopes and xenocryst contamination in two volcanoes. The majority of dates obtained for caldera-forming eruptions coincide with glacial stages in accordance with the sediment record in the NW Pacific, suggesting an increase in explosive volcanic activity since the onset of the last glaciation 2.6 Ma. Rapid changes in ice volume during glacial times and the resulting fluctuation of glacial loading/unloading could have caused volatile saturation in shallow magma chambers and, in combination with availability of low-δ18O glacial meltwaters, increased the proportion of explosive vs effusive eruptions. The presented results provide new constraints on Pliocene–Pleistocene volcanic activity in Kamchatka, and thus constrain an important component of the Pacific Ring of Fire.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-12-02
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-04-03
    Description: The 1.85 Ga Belomorian Belt, Karelia, Russia, hosts ultralow 18 O and D (as low as –27.3 and –235 standard mean ocean water [SMOW], respectively), high-Al gneisses and amphibolites that we attribute to the Paleoproterozoic "Slushball Earth" glaciation. They now occur in at least 11 localities spanning 450 km. To constrain distribution of 18 O-depleted rocks, we performed detailed field mapping in Khitostrov, where 18 O values are the lowest. Using 430 new and previously published laser fluorination isotope analyses, we show that the elongated, concentrically zoned area of 18 O depletion is greater than 6 x 2 km in areal extent, ~10 times larger than previously thought. Relationships between 17 O versus 18 O strictly adhere to the equilibrium terrestrial mass-dependent fractionation with a slope of 0.527. We also report the results of ion microprobe U-Pb geochronology of zircons coupled with co-registered oxygen isotope spot analyses for mafic intrusions and host gneisses in six localities. The 2.9–2.7 Ga gneiss zircon cores are normal in 18 O (5–7). They show truncated oscillatory cathodoluminescence (CL) patterns and rounded shape indicative of original igneous crystallization with subsequent detrital overprinting. A younger 2.6–2.55 Ga metamorphic zircon domain with normal 18 O, low Th/U, dark cathodoluminescence, and also with rounded crystal morphology is commonly preserved. Cores are surrounded by ubiquitous rims highly depleted in 18 O (re-)crystallized with Svecofennian (1.85–1.89 Ga) ages. Rims are interpreted as metamorphic due to bright and uniform CL and Th/U 〈0.05. Mafic intrusions preserve few igneous zircon crystals between ca. 2.23 and 2.4 Ga in age, but neoblastic zircon in these intrusions originated mostly during 1.85 Ga Svecofennian metamorphism. The 18 O-age relationship for metamorphic rims in zircon and corundum grains suggests that 18 O values of fluids were subtly increasing with time during metamorphism. Large metamorphic corundum grains have ~3 intracrystalline 18 O isotope zonation from –24 to –21, which likely developed during interaction with metamorphic fluids. The Zr-in-rutile geothermometer temperatures are in the range of 760 to 720 °C, in accordance with mineral assemblages and amphibolite metamorphic grade. High and irregular rare-earth element (REE) abundance in cores and rims of many zircons correlates with high phosphorus content and is explained by nanometer-scale xenotime and monazite inclusions, likely in metamict zones during 1.85 Ga Svecofennian metamorphism. A survey of oxygen isotopes in ultrahigh-pressure diamond and coesite-bearing metamorphic terrains around the world reveals normal to high- 18 O values, suggesting that the low 18 O in metamorphic rocks of Dabie Shan, Kokchetav, and in Karelia, are genetically unrelated to metamorphism. We discuss alternative ways to achieve extreme 18 O depletion by kinetic, Rayleigh, and thermal diffusion processes, and by metamorphism. We prefer an interpretation where the low- 18 O and high-Al signature of the rocks predates metamorphism, and is caused by shallow hydrothermal alteration and partial dissolution of the protolith surrounding shallow mafic intrusions by glacial meltwaters during pan-global Paleoproterozoic "Slushball Earth" glaciations between ca. 2.4 and ca. 2.23 Ga.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...