GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Oxford :Taylor & Francis Group,
    Schlagwort(e): Glaciers. ; Electronic books.
    Beschreibung / Inhaltsverzeichnis: A new edition of the classic textbook for all students of glaciation.
    Materialart: Online-Ressource
    Seiten: 1 online resource (817 pages)
    Ausgabe: 2nd ed.
    ISBN: 9781444128390
    DDC: 551.31
    Sprache: Englisch
    Anmerkung: Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface to the First Edition -- Preface to the Second Edition -- Acknowledgements -- Part One Glaciers -- 1 Introduction -- 1.1 Glacier systems -- 1.1.1 Mass balance -- 1.1.2 Meltwater -- 1.1.3 Glacier motion -- 1.1.4 Glaciers and sea-level change -- 1.1.5 Erosion and debris transport -- 1.1.6 Glacial sediments, landforms and landscapes -- 1.2 Glacier morphology -- 1.2.1 Ice sheets and ice caps -- 1.2.2 Glaciers constrained by topography -- 1.2.3 Ice shelves -- 1.3 Present distribution of glaciers -- 1.3.1 Influence of latitude and altitude -- 1.3.2 Influence of aspect, relief and distance from a moisture source -- 1.4 Past distribution of glaciers -- 1.4.1 'Icehouse' and 'greenhouse' worlds -- 1.4.2 Cenozoic glaciation -- 2 Snow, Ice and Climate -- 2.1 Introduction -- 2.2 Surface energy balance -- 2.2.1 Changes of state and temperature -- 2.2.2 Shortwave radiation -- 2.2.3 Longwave radiation -- 2.2.4 Sensible and latent heat: turbulent fluxes -- 2.2.5 Energy supplied by rain -- 2.2.6 Why is glacier ice blue? -- 2.3 Ice temperature -- 2.3.1 The melting point of ice -- 2.3.2 Controls on ice temperature -- 2.3.3 Thermal structure of glaciers and ice sheets -- 2.4 Processes of accumulation and ablation -- 2.4.1 Snow and ice accumulation -- 2.4.2 Transformation of snow to ice -- 2.4.3 Melting of snow and ice -- 2.4.4 Sublimation and evaporation -- 2.4.5 The influence of debris cover -- 2.5 Mass balance -- 2.5.1 Definitions -- 2.5.2 Measurement of mass balance -- 2.5.3 Annual mass balance cycles -- 2.5.4 Mass balance gradients -- 2.5.5 The equilibrium line -- 2.5.6 Glaciation levels or glaciation thresholds -- 2.5.7 Glacier sensitivity to climate change -- 2.6 Glacier-climate interactions -- 2.6.1 Effects of glaciers and ice sheets on the atmosphere -- 2.7 Ice cores. , 2.7.1 Ice coring programmes -- 2.7.2 Stable isotopes -- 2.7.3 Ancient atmospheres: the gas content of glacier ice -- 2.7.4 Solutes and particulates -- 3 Glacier Hydrology -- 3.1 Introduction -- 3.2 Basic concepts -- 3.2.1 Water sources and routing -- 3.2.2 Hydraulic potential -- 3.2.3 Resistance to flow -- 3.2.4 Channel wall processes: melting, freezing and ice deformation -- 3.3 Supraglacial and englacial drainage -- 3.3.1 Supraglacial water storage and drainage -- 3.3.2 Englacial drainage -- 3.4 Subglacial drainage -- 3.4.1 Subglacial channels -- 3.4.2 Water films -- 3.4.3 Linked cavity systems -- 3.4.4 Groundwater flow -- 3.4.5 Water at the ice-sediment interface -- 3.5 Glacial hydrological systems -- 3.5.1 Temperate glaciers -- 3.5.2 Polythermal glaciers -- 3.5.3 Modelling glacial hydrological systems -- 3.6 Proglacial runoff -- 3.6.1 Seasonal and shorter-term cycles -- 3.6.2 Runoff and climate change -- 3.7 Glacial lakes and outburst floods -- 3.7.1 Introduction -- 3.7.2 Moraine-dammed lakes -- 3.7.3 Ice-dammed lakes -- 3.7.4 Icelandic subglacial lakes -- 3.7.5 Estimating GLOF magnitudes -- 3.8 Life in glaciers -- 3.8.1 Supraglacial ecosystems -- 3.8.2 Subglacial ecosystems -- 3.9 Glacier hydrochemistry -- 3.9.1 Overview -- 3.9.2 Snow chemistry -- 3.9.3 Chemical weathering processes -- 3.9.4 Subglacial chemical weathering -- 3.9.5 Proglacial environments -- 3.9.6 Rates of chemical erosion -- 4 Processes of Glacier Motion -- 4.1 Introduction -- 4.2 Stress and strain -- 4.2.1 Stress -- 4.2.2 Strain -- 4.2.3 Rheology: stress-strain relationships -- 4.2.4 Force balance in glaciers -- 4.3 Deformation of ice -- 4.3.1 Glen's Flow Law -- 4.3.2 Crystal fabric, impurities and water content -- 4.3.3 Ice creep velocities -- 4.4 Sliding -- 4.4.1 Frozen beds -- 4.4.2 Sliding of wet-based ice -- 4.4.3 Glacier-bed friction -- 4.4.4 The role of water. , 4.5 Deformable beds -- 4.5.1 The Boulton-Hindmarsh model -- 4.5.2 Laboratory testing of subglacial tills -- 4.5.3 Direct observations of deformable glacier beds -- 4.5.4 Rheology of subglacial till -- 4.6 Rates of basal motion -- 4.6.1 'Sliding laws' -- 4.6.2 Local and non-local controls on ice velocity -- 4.7 Crevasses and other structures: strain made visible -- 4.7.1 Crevasses -- 4.7.2 Crevasse patterns -- 4.7.3 Layering, foliation and related structures -- 5 Glacier Dynamics -- 5.1 Introduction -- 5.2 Understanding glacier dynamics -- 5.2.1 Balance velocities -- 5.2.2 Deviations from the balance velocity -- 5.2.3 Changes in ice thickness: continuity -- 5.2.4 Thermodynamics -- 5.3 Glacier models -- 5.3.1 Overview -- 5.3.2 Equilibrium glacier profiles -- 5.3.3 Time-evolving glacier models -- 5.4 Dynamics of valley glaciers -- 5.4.1 Intra-annual velocity variations -- 5.4.2 Multi-annual variations -- 5.5 Calving glaciers -- 5.5.1 Flow of calving glaciers -- 5.5.2 Calving processes -- 5.5.3 'Calving laws' -- 5.5.4 Advance and retreat of calving glaciers -- 5.6 Ice shelves -- 5.6.1 Mass balance of ice shelves -- 5.6.2 Flow of ice shelves -- 5.6.3 Ice shelf break-up -- 5.7 Glacier surges -- 5.7.1 Overview -- 5.7.2 Distribution of surging glaciers -- 5.7.3 Temperate glacier surges -- 5.7.4 Polythermal surging glaciers -- 5.7.5 Surge mechanisms -- 6 The Greenland and Antarctic Ice Sheets -- 6.1 Introduction -- 6.2 The Greenland Ice Sheet -- 6.2.1 Overview -- 6.2.2 Climate and surface mass balance -- 6.2.3 Ice sheet flow -- 6.2.4 Ice streams and outlet glaciers -- 6.3 The Antarctic Ice Sheet -- 6.3.1 Overview -- 6.3.2 Climate and mass balance -- 6.3.3 Flow of inland ice -- 6.3.4 Ice streams -- 6.3.5 Hydrology and subglacial lakes -- 6.3.6 Ice stream stagnation and reactivation -- 6.3.7 Stability of the West Antarctic Ice Sheet. , 7 Glaciers and Sea-Level Change -- 7.1 Introduction -- 7.2 Causes of sea-level change -- 7.2.1 Overview -- 7.2.2 Glacio-eustasy and global ice volume -- 7.2.3 Glacio-isostasy and ice sheet loading -- 7.3 Sea-level change over glacial-interglacial cycles -- 7.3.1 Ice sheet fluctuations and eustatic sea-level change -- 7.3.2 Sea-level histories in glaciated regions -- 7.4 Glaciers and recent sea-level change -- 7.4.1 Recorded sea-level change -- 7.4.2 Global glacier mass balance -- 7.5 Future sea-level change -- 7.5.1 IPCC climate and sea-level projections -- 7.5.2 Predicting the glacial contribution to sea-level change -- Part Two Glaciation -- 8 Erosional Processes, Forms and Landscapes -- 8.1 Introduction -- 8.2 Subglacial erosion -- 8.2.1 Rock fracture: general principles -- 8.2.2 Abrasion -- 8.2.3 Quarrying -- 8.2.4 Erosion beneath cold ice -- 8.2.5 Erosion of soft beds -- 8.3 Small-scale erosional forms -- 8.3.1 Striae and polished surfaces -- 8.3.2 Rat tails -- 8.3.3 Chattermarks, gouges and fractures -- 8.3.4 P-forms -- 8.4 Intermediate-scale erosional forms -- 8.4.1 Roches moutonnées -- 8.4.2 Whalebacks and rock drumlins -- 8.4.3 Crag and tails -- 8.4.4 Channels -- 8.5 Large-scale erosional landforms -- 8.5.1 Rock basins and overdeepenings -- 8.5.2 Basins and overdeepenings in soft sediments -- 8.5.3 Troughs and fjords -- 8.5.4 Cirques -- 8.5.5 Strandflats -- 8.6 Landscapes of glacial erosion -- 8.6.1 Areal scouring -- 8.6.2 Selective linear erosion -- 8.6.3 Landscapes of little or no glacial erosion -- 8.6.4 Alpine landscapes -- 8.6.5 Cirque landscapes -- 8.6.6 Continent-scale patterns of erosion -- 9 Debris Entrainment and Transport -- 9.1 Introduction -- 9.2 Approaches to the study of glacial sediments -- 9.2.1 The glacial debris cascade -- 9.2.2 Spatial hierarchies of sediments and landforms -- 9.3 Glacial debris entrainment. , 9.3.1 Supraglacial debris entrainment -- 9.3.2 Incorporation of debris into basal ice -- 9.4 Debris transport and release -- 9.4.1 Subglacial transport -- 9.4.2 High-level debris transport -- 9.4.3 Glacifluvial transport -- 9.5 Effects of transport on debris -- 9.5.1 Granulometry -- 9.5.2 Clast morphology -- 9.5.3 Particle micromorphology -- 10 Glacigenic Sediments and Depositional Processes -- 10.1 Introduction -- 10.2 Sediment description and classification -- 10.2.1 Sediment description -- 10.2.2 Deformation structures -- 10.2.3 Primary and secondary deposits -- 10.3 Primary glacigenic deposits (till) -- 10.3.1 Overview -- 10.3.2 Processes of subglacial till formation -- 10.3.3 Glacitectonite -- 10.3.4 Subglacial traction till -- 10.4 Glacifluvial deposits -- 10.4.1 Terminology and classification of glacifluvial sediments -- 10.4.2 Plane bed deposits -- 10.4.3 Ripple cross-laminated facies -- 10.4.4 Dunes -- 10.4.5 Antidunes -- 10.4.6 Scour and minor channel fills -- 10.4.7 Gravel sheets -- 10.4.8 Silt and mud drapes -- 10.4.9 Hyperconcentrated flow deposits -- 10.5 Gravitational mass movement deposits and syn-sedimentary deformation structures -- 10.5.1 Overview -- 10.5.2 Fall deposits -- 10.5.3 Slide and slump deposits -- 10.5.4 Debris (sediment-gravity) flow deposits -- 10.5.5 Turbidites -- 10.5.6 Clastic dykes and hydrofracture fills -- 10.6 Glacimarine and glacilacustrine deposits -- 10.6.1 Water body characteristics and sediment influx -- 10.6.2 Depositional processes -- 10.6.3 Varves and other glacilacustrine overflow/interflow deposits -- 10.6.4 Laminated glacimarine sediments -- 10.6.5 Ice-rafted debris and undermelt deposits -- 10.6.6 Iceberg grounding structures and sediments -- 10.6.7 Fossiliferous deposits and biogenic oozes -- 10.7 Winnowing structures (lags, coquinas and boulder pavements) -- 11 Sediment-Landform Associations. , 11.1 Introduction.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    London :Taylor & Francis Group,
    Schlagwort(e): Geology, Stratigraphic - Quaternary. ; Electronic books.
    Beschreibung / Inhaltsverzeichnis: Sediments are the most valuable form of physical evidence for past Earth surface processes. They have the potential to build up an archive of events and provide a window into the past. Through careful examination of sediments the shifting patterns of surface processes across space and time are revealed, allowing us to reconstruct past environments and environmental change. A Practical Guide to the Study of Glacial Sediments is a guide to the standard techniques employed to read the sedimentary record of former glaciers and ice sheets. It demonstrates that the often complex and fragmentary glacial sedimentary record can, when examined systematically and rationally, provide detailed insights into former environments and climates in places where no other evidence is available. The complementary techniques covered in this book include: facies description, grain size analysis, clast form assessment, clast macrofabric analysis, micromorphology, particle lithology and assessment of engineering properties. They yield consistent and meaningful results in a range of glacial depositional environments throughout the world, from the high Arctic to the Himalayas. A Practical Guide to the Study of Glacial Sediments provides students and researchers with a clear and accessible guide to recording and interpreting glacial successions wherever the location.
    Materialart: Online-Ressource
    Seiten: 1 online resource (297 pages)
    Ausgabe: 1st ed.
    ISBN: 9781444119145
    DDC: 551.314
    Sprache: Englisch
    Anmerkung: Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Acknowledgements -- Figure Acknowledgements -- Chapter 1 Introduction and rationale -- Chapter 2 Facies description and the logging of sedimentary exposures -- Chapter 3 The size of sedimentary particles -- Chapter 4 Clast morphology -- Chapter 5 Macrofabric -- Chapter 6 Micro-scale features and structures -- Chapter 7 Particle lithology (or mineral and geochemical analysis) -- Chapter 8 Engineering properties -- Chapter 9 The research project - a case study of Quaternary glacial sediments -- References -- Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    In: Quaternary international, Oxford [u.a.] : Pergamon Press, 1989, 138(2005), Seite 55-78, 1040-6182
    In: volume:138
    In: year:2005
    In: pages:55-78
    Materialart: Artikel
    ISSN: 1040-6182
    Sprache: Unbestimmte Sprache
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    In: Quaternary international, Oxford [u.a.] : Pergamon Press, 1989, 138(2005), Seite 8-21, 1040-6182
    In: volume:138
    In: year:2005
    In: pages:8-21
    Materialart: Artikel
    ISSN: 1040-6182
    Sprache: Unbestimmte Sprache
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Buch
    Buch
    London : Arnold
    Schlagwort(e): Glaciers ; Glaciers ; Glaciology ; Glaciers ; Glacial landforms ; Glaciology ; Vergletscherung ; Gletscher ; Glaziologie
    Materialart: Buch
    Seiten: VII, 734 S , Ill., graph. Darst., Kt , 28 cm
    ISBN: 0340653035 , 0340584319 , 0470236515 , 0470236507
    DDC: 551.31
    RVK:
    RVK:
    RVK:
    Sprache: Englisch
    Anmerkung: Literaturverz. S. [631] - 716 , Literaturverz. S. [631] - 716
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2023-01-13
    Beschreibung: The dataset consists of: three orthophotos and DEMs derived from Stereo Geo-Eye and Worldview imagery; and two velocity maps derived from TerraSAR-X imagery. The DEM-orthophoto pairs cover the debris-covered tongue of Ngozumpa Glacier at 5m horizontal resolution for 9 June 2010 (GeoEye-1), 23 December 2012 (GeoEye-1) and 5 January 2015 (WorldView-3). The 'annual' velocity map is based on feature tracking on images acquired on 29 January 2015 and 5 January 2016. The 'velocity difference' map shows the difference between the 'annual' values and velocities derived from images covering a minimal 'winter' period: 19 September 2014 to 18 January 2015.
    Schlagwort(e): DATE/TIME; File name; File size; Nepal; Ngozumpa_Glacier_DEM; Uniform resource locator/link to file
    Materialart: Dataset
    Format: text/tab-separated-values, 24 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Sevestre, Heïdi; Benn, Douglas I; Luckman, Adrian; Nuth, Chris; Kohler, Jack; Lindbäck, Katrin; Pettersson, Rickard (2018): Tidewater Glacier Surges Initiated at the Terminus. Journal of Geophysical Research-Earth Surface, 123(5), 1035-1051, https://doi.org/10.1029/2017JF004358
    Publikationsdatum: 2023-01-13
    Beschreibung: A time-series of velocity data spanning recent surges of two tidewater glaciers in Svalbard: Aavatsmarkbreen (Dec 2012-Oct 2015) and Wahlenbergbreen (Sept 2013-Oct 2015). The data were obtained by feature tracking using pairs of TerraSAR-X backscatter intensity images, typically at 11 day intervals. The GeoTiff files are spatially filtered maps of surface speed. Filenames reveal satellite beams (strips) as well as dates and times.
    Schlagwort(e): File format; File name; File size; MULT; Multiple investigations; Svalbard; Uniform resource locator/link to file
    Materialart: Dataset
    Format: text/tab-separated-values, 880 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Sedimentology 42 (1995), S. 0 
    ISSN: 1365-3091
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Geologie und Paläontologie
    Notizen: The foreland of Breidamerkurjökull, Iceland, is the only locality where tills known to have undergone subglacial deformation are exposed. Till on the foreland has a two-tiered structure, consisting of a dilatant upper horizon c 0.5 m thick and a compact lower till; these horizons correspond to the ductile deforming A horizon and the brittle-ductile B horizon observed below the glacier by G. S. Boulton and co-workers. The relationship between known strain history and a variety of macrofabric elements is examined for these two genetic facies of deformation till. The upper horizon exhibits variable a-axis fabrics and abundant evidence for clast re-alignment, reflecting ductile flow and rapid clast response to transient strains. In contrast, the lower horizon has consistently well organized a-axis fabrics with a narrow range of dip values, recording clast rotation into parallel with strain axes during brittle or brittle-ductile shear. The data indicate that till strain history imparts identifiable macrofabric signatures, providing important analogues to guide the interpretation of Pleistocene tills.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Community dentistry and oral epidemiology 25 (1997), S. 0 
    ISSN: 1600-0528
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Abstract The effect of fluoridation on approximal caries progression was investigated using serial digitized bitewing images and conventional film images of 290 12-16-year-old schoolchildren who were lifetime residents of either Rio de Janeiro (a fluoridated area) or Mangaratiba and Angra dos Reis (non-fluoridated areas) in the state of Rio de Janeiro, Brazil. One examiner scored a maximum of 28 approximal surfaces of posterior teeth per subject using both methods. The intra-examiner reliability for rating lesion depth with digital images was comparable with that of the conventional bitewing films (namely, intraclass correlation of 0.99 and weighted Kappa scores of 0.82, respectively). Approximal surface D1S was 3.17±0.25 (Sx) in fluoridated areas and 6.64±0.44 in non-fluoridated areas. After 1 year, the rate of caries progression in approximal surfaces was significantly lower in the fluoridated areas (0.54±0.14) as compared with the non-fluoridated areas (1.41±0.20) using Pitts' scoring system for conventional bitewing radiographs (P〈0.001). Similarly, the digital radiographic method was able to detect subtle differences in approximal caries progression in the enamel and the dentin (overall mean: 0.34 mm/year in fluoridated areas vs 0.49 mm/year in non-fluoridated areas, P〈0.05). The two radiographic methods were strongly correlated (rs=0.7). Assuming a constant rate over time, these results indicate that lesion progression from the outer half of the enamel into the outer half of the dentin takes approximately 3-4 years in schoolchildren from the fluoridated areas compared to 2 1/2 years in the non-fluoridated areas.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Journal of clinical periodontology 17 (1990), S. 0 
    ISSN: 1600-051X
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Abstract Despite their widespread use, dental radiographs have numerous shortcomings for measuring alveolar bone changes. In order to develop guidelines for improving the reliability of radiographic measurements, factors affecting the formation of an image were reviewed. These were considered regarding the design of a clinical monitoring system, capable of detecting the loss of small amounts of alveolar bone crest from serial films. Dentists need a monitoring system to assess whether bone loss is progressing or to judge whether a treatment is successful. 2 models were constructed to predict how long it would take to detect marginal bone loss occurring at a linear rate of 0.1 mm/year. The 1st model assumed a CEJ-crest measurement error of ±0.3 mm and the second ±0.9 mm, both using a 0.1 mm measuring interval. These error values were derived from the literature. The 1st model predicted it would take between 7 and 13 years for the system to measure a 1.0 mm loss in crest height caused by an actual loss of between 0.7 and 1.3 mm. The 2nd model predicted that a 1.0 mm measurement would occur between 1 and 19 years, caused by an actual crestal bone loss of between 0.1 and 1.9 mm. From these models, it appears that routine screening of patients by general dental practitioners for small amounts of bone loss is unlikely to be successful without the use of (i) repositionable stentless film holders to standardise the irradiation geometry, (ii) a very accurate reproducible measuring technique which (iii) will probably require an automatic computer-based measuring system. Previous reports on the measurement of bone loss less than 1.0 mm are most likely measurement errors. A method of selecting radiographic examination time intervals is suggested.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...