GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Wiley ; 2019
    In:  Atmospheric Science Letters Vol. 20, No. 5 ( 2019-05)
    In: Atmospheric Science Letters, Wiley, Vol. 20, No. 5 ( 2019-05)
    Kurzfassung: Recent studies using reanalysis data and complex models suggest that the Tropics influence midlatitude blocking. Here, the influence of tropical precipitation anomalies is investigated further using a dry dynamical model driven by specified diabatic heating anomalies. The model uses a quasi‐realistic setup based on idealized orography and an idealized representation of the land‐ocean thermal contrast. Results concerning the El Niño Southern Oscillation and the Madden‐Julian Oscillation are mostly consistent with previous studies and emphasize the importance of tropical dynamics for driving the variability of blocking at midlatitudes. It is also shown that a common bias in models of the Coupled Model Intercomparison Project Phase 5 (CMIP5), namely, excessive tropical precipitation, leads to an underestimation of midlatitude blocking in our model, also a common bias in the CMIP5 models. The strongest blocking anomalies associated with the tropical precipitation bias are found over Europe, where the underestimation of blocking in CMIP5 models is also particularly strong.
    Materialart: Online-Ressource
    ISSN: 1530-261X , 1530-261X
    URL: Issue
    Sprache: Englisch
    Verlag: Wiley
    Publikationsdatum: 2019
    ZDB Id: 2025884-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    American Meteorological Society ; 2022
    In:  Journal of Physical Oceanography ( 2022-03-17)
    In: Journal of Physical Oceanography, American Meteorological Society, ( 2022-03-17)
    Kurzfassung: Equatorial deep jets (EDJ) are zonal currents along the equator in all three ocean basins that alternate in direction with depth and time. In the Atlantic below the thermocline, they are the dominant variability on interannual timescales. Observations of equatorial deep jets are available but scarce, given the EDJs’ location at depth, their small vertical scale and their long periodicity of several years. In the last few years, Argo floats have added a significant amount of measurements at intermediate depth. In this study we therefore revise estimates of the EDJ scales based on Argo float data. Mostly, we use velocity data at 1000 m depth calculated from float displacement, which yield robust estimates of the Atlantic EDJ period (4.6 years), amplitude distribution, phase distribution, zonal wavelength (146.7°), and meridional structure. We also show that the equatorial amplitude of the EDJs’ first meridional mode Rossby wave component (9.8 cm s −1 ) is larger than that of their Kelvin wave component (2.8 cm s −1 ). Additionally, we present a new estimation of the EDJs’ vertical structure throughout the Atlantic basin, based on an equatorial geostrophic velocity reconstruction from hydrographic Argo float measurements from depths between 400 and 2000 m. Our new estimates from Argo float data provide the first basin-wide assessment of the Atlantic EDJ scales, as well as having smaller uncertainties than estimates from earlier studies.
    Materialart: Online-Ressource
    ISSN: 0022-3670 , 1520-0485
    Sprache: Unbekannt
    Verlag: American Meteorological Society
    Publikationsdatum: 2022
    ZDB Id: 2042184-9
    ZDB Id: 184162-2
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    American Geophysical Union (AGU) ; 2020
    In:  Geophysical Research Letters Vol. 47, No. 10 ( 2020-05-28)
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 47, No. 10 ( 2020-05-28)
    Kurzfassung: Equatorial deep jets can be reproduced based on the intraseasonal momentum flux convergence alone In an idealized ocean model, the deep jets nonlinearly generate both mean eastward and westward flow along the equator
    Materialart: Online-Ressource
    ISSN: 0094-8276 , 1944-8007
    Sprache: Englisch
    Verlag: American Geophysical Union (AGU)
    Publikationsdatum: 2020
    ZDB Id: 2021599-X
    ZDB Id: 7403-2
    SSG: 16,13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    Copernicus GmbH ; 2023
    In:  Ocean Science Vol. 19, No. 3 ( 2023-06-28), p. 923-939
    In: Ocean Science, Copernicus GmbH, Vol. 19, No. 3 ( 2023-06-28), p. 923-939
    Kurzfassung: Abstract. Equatorial deep jets (EDJs) are vertically alternating, stacked zonal currents that flow along the Equator in all three ocean basins at intermediate depth. Their structure can be described quite well by the sum of high-baroclinic-mode equatorial Kelvin and Rossby waves. However, the EDJ meridional width is larger by a factor of 1.5 than inviscid theory predicts for such waves. Here, we use a set of idealised model configurations representing the Atlantic Ocean to investigate the contributions of different processes to the enhanced EDJ width. Corroborated by the analysis of shipboard velocity sections, we show that widening of the EDJs by momentum loss due to irreversible mixing or other processes contributes more to their enhanced time mean width than averaging over meandering of the jets. Most of the widening due to meandering can be attributed to the strength of intraseasonal variability in the jets' depth range, suggesting that the jets are meridionally advected by intraseasonal waves. A slightly weaker connection to intraseasonal variability is found for the EDJ widening by momentum loss. These results enhance our understanding of the dynamics of the EDJs and, more generally, of equatorial waves in the deep ocean.
    Materialart: Online-Ressource
    ISSN: 1812-0792
    Sprache: Englisch
    Verlag: Copernicus GmbH
    Publikationsdatum: 2023
    ZDB Id: 2183769-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    In: Geoscientific Model Development, Copernicus GmbH, Vol. 16, No. 2 ( 2023-01-31), p. 779-811
    Kurzfassung: Abstract. State-of-the-art Earth system models typically employ grid spacings of O(100 km), which is too coarse to explicitly resolve main drivers of the flow of energy and matter across the Earth system. In this paper, we present the new ICON-Sapphire model configuration, which targets a representation of the components of the Earth system and their interactions with a grid spacing of 10 km and finer. Through the use of selected simulation examples, we demonstrate that ICON-Sapphire can (i) be run coupled globally on seasonal timescales with a grid spacing of 5 km, on monthly timescales with a grid spacing of 2.5 km, and on daily timescales with a grid spacing of 1.25 km; (ii) resolve large eddies in the atmosphere using hectometer grid spacings on limited-area domains in atmosphere-only simulations; (iii) resolve submesoscale ocean eddies by using a global uniform grid of 1.25 km or a telescoping grid with the finest grid spacing at 530 m, the latter coupled to a uniform atmosphere; and (iv) simulate biogeochemistry in an ocean-only simulation integrated for 4 years at 10 km. Comparison of basic features of the climate system to observations reveals no obvious pitfalls, even though some observed aspects remain difficult to capture. The throughput of the coupled 5 km global simulation is 126 simulated days per day employing 21 % of the latest machine of the German Climate Computing Center. Extrapolating from these results, multi-decadal global simulations including interactive carbon are now possible, and short global simulations resolving large eddies in the atmosphere and submesoscale eddies in the ocean are within reach.
    Materialart: Online-Ressource
    ISSN: 1991-9603
    Sprache: Englisch
    Verlag: Copernicus GmbH
    Publikationsdatum: 2023
    ZDB Id: 2456725-5
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...