GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Publisher
Years
  • 1
    Publication Date: 2024-03-15
    Description: Ocean warming and ocean acidification (OA) are direct consequences of climate change and affect coral reefs worldwide. While the effect of ocean warming manifests itself in increased frequency and severity of coral bleaching, the effects of ocean acidification on corals are less clear. In particular, long-term effects of OA on the bacterial communities associated with corals are largely unknown. In this study, we investigated the effects of ocean acidification on the resident and active microbiome of long-term aquaria-maintained Stylophora pistillata colonies by assessing 16S rRNA gene diversity on the DNA (resident community) and RNA level (active community). Coral colony fragments of S. pistillata were kept in aquaria for 2 years at four different pCO2 levels ranging from current pH conditions to increased acidification scenarios (i.e., pH 7.2, 7.4, 7.8, and 8). We identified 154 bacterial families encompassing 2,047 taxa (OTUs) in the resident and 89 bacterial families including 1,659 OTUs in the active communities. Resident communities were dominated by members of Alteromonadaceae, Flavobacteriaceae, and Colwelliaceae, while active communities were dominated by families Cyclobacteriacea and Amoebophilaceae. Besides the overall differences between resident and active community composition, significant differences were seen between the control (pH 8) and the two lower pH treatments (7.2 and 7.4) in the active community, but only between pH 8 and 7.2 in the resident community. Our analyses revealed profound differences between the resident and active microbial communities, and we found that OA exerted stronger effects on the active community. Further, our results suggest that rDNA- and rRNA-based sequencing should be considered complementary tools to investigate the effects of environmental change on microbial assemblage structure and activity.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Chao 1 richness; Chao 1 richness, standard deviation; Chao 1 richness, standard error; Community composition and diversity; Containers and aquaria (20-1000 L or 〈 1 m**2); Entire community; Evenness of species; Evenness of species, standard deviation; Evenness of species, standard error; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Laboratory experiment; Laboratory strains; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Rocky-shore community; Salinity; Shannon Diversity Index; Shannon Diversity Index, standard deviation; Shannon Diversity index, standard error; Temperature, water; Treatment; Type
    Type: Dataset
    Format: text/tab-separated-values, 180 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-15
    Description: Changes in temperature and CO2 are typically associated with climate change, but they also act on shorter time scales, leading to alterations in phytoplankton physiology and community structure. Interactions among stressors may cause synergistic or antagonistic effects on phytoplankton dynamics. Therefore, the main goal of this work is to understand the short-term isolated and interactive effects of warming and high CO2 on phytoplankton nutrient consumption, growth, production, and community structure in the Ria Formosa coastal lagoon (southern Portugal). We performed microcosm experiments with temperature and CO2 manipulation, and dilution experiments under temperature increase, using winter phytoplankton assemblages. Phytoplankton responses were evaluated using inverted and epifluorescence microscopy. Overall, phytoplankton growth and microzooplankton grazing on phytoplankton decreased with warming. Negative antagonist interactions with CO2 alleviated the negative effect of temperature on phytoplankton and cryptophytes. In contrast, higher temperature benefited smaller-sized phytoplankton, namely cyanobacteria and eukaryotic picophytoplankton. Diatom growth was not affected by temperature, probably due to nutrient limitation, but high CO2 had a positive effect on diatoms, alleviating the effect of nutrient limitation. Results suggest that this winter phytoplankton assemblage is well acclimated to ambient conditions, and short-term increases in temperature are detrimental, but can be alleviated by high CO2.
    Keywords: Alkalinity, total; Ammonium consumption rate; Ammonium consumption rate, standard error; Aragonite saturation state; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Community composition and diversity; Entire community; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Growth rate, standard error; Irradiance; Laboratory experiment; Light saturation point; Light saturation point, standard error; Mediterranean Sea; Nitrate consumption rate; Nitrate consumption rate, standard error; OA-ICC; Ocean Acidification International Coordination Centre; Other metabolic rates; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphate consumption rate; Phosphate consumption rate, standard error; Photosynthetic efficiency, carbon production; Photosynthetic efficiency, standard error; Primary production/Photosynthesis; Production rate, maximal, light saturated, as carbon normalized to chlorophyll a, standard error; Production rate, maximal, light saturated, as carbon per chlorophyll a; Salinity; Silicate consumption rate; Silicate consumption rate, standard error; Specific primary production of carbon per Chlorophyll a; Temperate; Temperature; Temperature, water; Treatment; Type
    Type: Dataset
    Format: text/tab-separated-values, 1219 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...