GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0509
    Keywords: Key words: Bile ducts, MR—Magnetic resonance (MR), comparative studies—Magnetic resonance (MR), half-Fourier imaging.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract. Background: To compare half-Fourier acquisition single-shot turbo spin-echo (HASTE) magnetic resonance cholangiopancreatography (MRCP) with two-dimensional turbo spin-echo (2D TSE) MRCP for imaging pancreatobiliary diseases. Methods: Twenty-seven patients with biliary or pancreatic disease underwent MRCP on a 1.0-T scanner with a body phased-array coil. A T2-weighted HASTE sequence (18 s) and a T2-weighted 2D TSE sequence (45 s) were used during a breath-hold by the patient. The source images and maximum intensity projection images of both sequences were reviewed independently by two radiologists. Results: Motion artifacts were more severely pronounced with 2D TSE sequences than with HASTE sequences (p 〈 0.001). All obstructions and their sites were accurately identified with both sequences. Filling defects (calculi) in bile ducts were identified in all 22 segments (100%) with HASTE-MRCP, whereas calculi in 19 of 22 segments (86%) were identified with 2D TSE-MRCP (p= 0.25). Three missed sites on 2D TSE-MRCP were intrahepatic bile ducts. Conclusions: HASTE-MRCP is superior to 2D TSE-MRCP in terms of detecting motion artifacts and visualization of the pancreatic ducts. HASTE-MRCP is comparable to 2D TSE-MRCP for visualization of the biliary ducts and their obstruction and is superior to 2D TSE-MRCP for identification of calculi in intrahepatic bile ducts.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-12-04
    Description: The thermal behavior of laminar flow in a concentric multilayer annulus is investigated numerically for varying dimensionless inner radii and a defined number of fluid layers. Under a hydrodynamically developed flow assumption within the fluid layers, the development of temperature profiles and heat transfer along the annulus are analyzed for two different boundary conditions. The mean temperature distribution, local Nusselt number, and mean Nusselt number are discussed in detail with an emphasis on the effects of the inner radius and number of fluid layers. The obtained results indicate that the change in heat transfer coefficient in a layered annulus is more pronounced at a small inner radius or larger radius ratio. A further insertion of more than ten layers has insignificant influence on the convective heat transfer in a layered annulus. The thermal behavior of laminar flow in a concentric multilayer annulus is investigated, emphasizing the effects of the inner radius and number of fluid layers. The change in heat transfer coefficient at the wall is found to be more evident at a small inner radius. Insertion of more than ten layers has less impact on the convective heat transfer in a layered annulus.
    Print ISSN: 0930-7516
    Electronic ISSN: 1521-4125
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-03-30
    Description: The removal of initiating primers from the 5′-ends of each Okazaki fragment, required for the generation of contiguous daughter strands, can be catalyzed by the combined action of DNA polymerase δ and Fen1. When the flaps generated by displacement of DNA synthesis activity of polymerase δ become long enough to bind replication protein A or form hairpin structures, the helicase/endonuclease enzyme, Dna2, becomes critical because of its ability to remove replication protein A-coated or secondary structure flaps. In this study, we show that the N-terminal 45-kDa domain of Dna2 binds hairpin structures, allowing the enzyme to target secondary structure flap DNA. We found that this activity was essential for the efficient removal of hairpin flaps by the endonuclease activity of Dna2 with the aid of its helicase activity. Thus, the efficient removal of hairpin structure flaps requires the coordinated action of all three functional domains of Dna2. We also found that deletion of the N-terminal 45-kDa domain of Dna2 led to a partial loss of the intra-S-phase checkpoint function and an increased rate of homologous recombination in yeast. We discuss the potential roles of the N-terminal domain of Dna2 in the maintenance of genomic stability.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-12-14
    Description: The present study was performed to evaluate the in vitro inhibitory potential of sarpogrelate and its active metabolite, M-1, on the activities of nine human cytochrome (CYP) isoforms. Using a cocktail assay, the effects of sarpogrelate on nine CYP isoforms and M-1 were measured by specific marker reactions in human liver microsomes. Sarpogrelate potently and selectively inhibited CYP2D6-mediated dextromethorphan O -demethylation with an IC 50 ( K i ) value of 3.05 μ M (1.24 μ M), in a competitive manner. M-1 also markedly inhibited CYP2D6 activity; its inhibitory effect with an IC 50 ( K i ) value of 0.201 μ M (0.120 μ M) was more potent than that of sarpogrelate, and was similarly potent as quinidine ( K i , 0.129 μ M), a well-known typical CYP2D6 inhibitor. In addition, sarpogrelate and M-1 strongly inhibited both CYP2D6-catalyzed bufuralol 1'-hydroxylation and metoprolol α -hydroxylation activities. However, sarpogrelate and M-1 showed no apparent inhibition of the other following eight CYPs: CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2E1, or CYP3A4/5. Upon 30-minute preincubation of human liver microsomes with sarpogrelate or M-1 in the presence of NADPH, no obvious shift in IC 50 was observed in terms of inhibition of the nine CYP activities, suggesting that sarpogrelate and M-1 are not time-dependent inactivators. Sarpogrelate strongly inhibited the activity of CYP2D6 at clinically relevant concentrations in human liver microsomes. These observations suggest that sarpogrelate could have an effect on the metabolic clearance of drugs possessing CYP2D6-catalyzed metabolism as a major clearance pathway, thereby eliciting pharmacokinetic drug–drug interactions.
    Print ISSN: 0090-9556
    Electronic ISSN: 1521-009X
    Topics: Chemistry and Pharmacology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-08-15
    Description: Macrolactin A (MA) and 7- O -succinyl macrolactin A (SMA), polyene macrolides containing a 24-membered lactone ring, show antibiotic effects superior to those of teicoplanin against vancomycin-resistant enterococci and methicillin-resistant Staphylococcus aureus . MA and SMA are currently being evaluated as antitumor agents in preclinical studies in Korea. We evaluated the potential of MA and SMA for the inhibition or induction of human liver cytochrome P450 (CYP) enzymes and UDP-glucuronosyltransferases (UGTs) in vitro to assess their safety as new molecular entities. We demonstrated that MA and SMA are potent competitive inhibitors of CYP2C9, with K i values of 4.06 μM and 10.6 μM, respectively. MA and SMA also weakly inhibited UGT1A1 activity, with K i values of 40.1 μM and 65.3 μM, respectively. However, these macrolactins showed no time-dependent inactivation of the nine CYPs studied. In addition, MA and SMA did not induce CYP1A2, CYP2B6, or CYP3A4/5. On the basis of an in vitro-in vivo extrapolation, our data strongly suggested that MA and SMA are unlikely to cause clinically significant drug-drug interactions mediated via inhibition or induction of most of the CYPs involved in drug metabolism in vivo , except for the inhibition of CYP2C9 by MA. Similarly, MA and SMA are unlikely to inhibit the activity of UGT1A1, UGT1A4, UGT1A6, UGT1A9, and UGT2B7 enzymes in vivo . Although further investigations will be required to clarify the in vivo interactions of MA with CYP2C9-targeted drugs, our findings offer a clearer understanding and prediction of drug-drug interactions for the safe use of MA and SMA in clinical practice.
    Print ISSN: 0066-4804
    Electronic ISSN: 1098-6596
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-10-03
    Description: Insulin activates sterol regulatory element-binding protein-1c (SREBP-1c) in liver, thereby increasing fatty acid and triglyceride synthesis. We created a line of transgenic rats that produce epitope-tagged human SREBP-1c in liver under control of the constitutive apolipoprotein E promoter/enhancer. This system allows us to dissect the pathway by which insulin stimulates...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-08-02
    Description: Jinwoo Seong, Nam-Shik Kim, Jee-Ah Kim, Wonbin Lee, Ji-Yun Seo, Min Kyu Yum, Ji-Hoon Kim, Inkuk Park, Jong-Seol Kang, Sung-Hwan Bae, Cheol-Heui Yun, and Young-Yun Kong Mammary glands develop through primary ductal elongation and side branching to maximize the spatial area. Although primary ducts are generated by bifurcation of terminal end buds, the mechanism through which side branching occurs is still largely unclear. Here, we show that inhibitor of DNA-binding 2 (ID2) drives side branch formation through the differentiation of K6 + bipotent progenitor cells (BPs) into CD61 + luminal progenitor cells (LPs). Id2 -null mice had side-branching defects, along with developmental blockage of the differentiation of K6 + BPs into CD61 + LPs. Notably, CD61 + LPs were found in budding and side branches, but not in terminal end buds. Hormone reconstitution studies using ovariectomized MMTV-hemagglutinin-nuclear localized sequence-tagged Id2 transgenic mice revealed that ID2 is a key mediator of progesterone, which drives luminal lineage differentiation and side branching. Our results suggest that CD61 is a marker of side branches and that ID2 regulates side branch formation by inducing luminal lineage commitment from K6 + BPs to CD61 + LPs.
    Print ISSN: 0950-1991
    Electronic ISSN: 1477-9129
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-08-31
    Description: The combination of hybrid perovskite and Cu(In,Ga)Se 2 (CIGS) has the potential for realizing high-efficiency thin-film tandem solar cells because of the complementary tunable bandgaps and excellent photovoltaic properties of these materials. In tandem solar device architectures, the interconnecting layer plays a critical role in determining the overall cell performance, requiring both an effective electrical connection and high optical transparency. We used nanoscale interface engineering of the CIGS surface and a heavily doped poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) hole transport layer between the subcells that preserves open-circuit voltage and enhances both the fill factor and short-circuit current. A monolithic perovskite/CIGS tandem solar cell achieved a 22.43% efficiency, and unencapsulated devices under ambient conditions maintained 88% of their initial efficiency after 500 hours of aging under continuous 1-sun illumination.
    Keywords: Engineering, Materials Science
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-11-09
    Description: Although flakes of two-dimensional (2D) heterostructures at the micrometer scale can be formed with adhesive-tape exfoliation methods, isolation of 2D flakes into monolayers is extremely time consuming because it is a trial-and-error process. Controlling the number of 2D layers through direct growth also presents difficulty because of the high nucleation barrier on 2D materials. We demonstrate a layer-resolved 2D material splitting technique that permits high-throughput production of multiple monolayers of wafer-scale (5-centimeter diameter) 2D materials by splitting single stacks of thick 2D materials grown on a single wafer. Wafer-scale uniformity of hexagonal boron nitride, tungsten disulfide, tungsten diselenide, molybdenum disulfide, and molybdenum diselenide monolayers was verified by photoluminescence response and by substantial retention of electronic conductivity. We fabricated wafer-scale van der Waals heterostructures, including field-effect transistors, with single-atom thickness resolution.
    Keywords: Engineering, Materials Science
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...