GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Publication Date: 2017-10-17
    Description: Winter balance is an important metric for assessing the change on glaciers and ice caps, yet measuring it using ground-based techniques can be challenging. We use the European Space Agency prototype Airborne SAR/Interferometric Radar Altimeter System (ASIRAS) to extract snow depths from the received altimeter waveforms over Austfonna ice cap, Svalbard. Additionally, we attempt to distinguish the long-term firn area from other glacier facies. We validate our results using snow depth and glacier facies characterizations determined from ground-based radar profiles, snow pits and a multi- look satellite synthetic aperture radar image. We show that the depth of the winter snowpack can be extracted from the altimeter data over most of the accumulation zone, comprising wet snow zone and a superimposed ice zone. The method struggles at lower elevations where internal reflections within the winter snowpack are strong and the winter snow depth is less than 1m. We use the abruptness of the reflection from the last summer surface (LSS) to attempt to distinguish glacier facies. While there is a general correlation between LSS abruptness and glacier facies, we do not find a relationship that warrants a distinct classification based on ASIRAS waveforms alone.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    International Glaciological Society
    In:  Annals of Glaciology, 42 (1). pp. 284-290.
    Publication Date: 2015-07-16
    Description: Internal tephra layers of known age have been detected by radio-echo soundings within the Mýrdalsjökull and Vatnajökull ice caps in Iceland. Assuming steady state, the estimated strain rates since these isochrones were deposited on the glacier surface have been used to calculate past average specific net balance rates in the accumulation zones along three flowlines on Mýrdalsjökull and one on Vatnajökull. For the period 1918–91 the specific mass-balance rate has been estimated to 4.5 and 3.5 m a−1 at 1350 m a.s.l. on the southern and northern slopes of Mýrdalsjökull, respectively. At 1800 m elevation on the Bárdarbunga ice dome in Vatnajökull, the specific net balance averaged over the last three centuries is estimated to be about 2.1 m a−1. Given this specific net balance, a revised age–depth timescale is presented for a 400 m deep ice core recovered in 1972 from Bárdarbunga. The ice at the bottom is estimated to be from AD 1750.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...