GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    The @journal of eukaryotic microbiology 48 (2001), S. 0 
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Food selectivity and the mechanisms of food selection were analyzed by video microscopy for three species (Spumella, Ochromonas, Cafeteria) of interception-feeding heterotrophic nanoflagellates. The fate of individual prey particles, either live bacteria and/or inert particles, was recorded during the different stages of the particle-flagellate-interaction, which included capture, ingestion, digestion, and egestion. The experiments revealed species-specific differences and new insights into the underlying mechanisms of particle selection by bacterivorous flagellates. When beads and bacteria were offered simultaneously, both particles were ingested unselectively at similar rates. However, the chrysomonads Spumella and Ochromonas egested the inert beads after a vacuole passage time of only 2–3 min, which resulted in an increasing proportion of bacteria in the food vacuoles. Vacuole passage time for starved flagellates was significantly longer compared to that of exponential-phase flagellates for Spumella and Ochromonas. The bicosoecid Cafeteria stored all ingested particles, beads as well as bacteria, in food vacuoles for more then 30 min. Therefore “selective digestion” is one main mechanism responsible for differential processing of prey particles. This selection mechanism may explain some discrepancies of former experiments using inert particles as bacterial surrogates for measuring bacterivory.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    The @journal of eukaryotic microbiology 51 (2004), S. 0 
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Current models on protistan size-selective feeding assume that contact probability is the factor that largely explains observed food preferences. Contact probability is generally expected to be positively correlated with prey size and therefore to explain observed food selection for larger prey items. We critically tested these basic assumptions on size-selective feeding using the interception-feeding chrysomonad nanoflagellates Ochromonas sp. and Spumella sp. Mechanisms of differential feeding were studied during distinct stages of the selection process (i. e. contact probability, capture efficiency, ingestion efficiency, and differential digestion) by means of high-resolution video microscopy. Food selection was investigated using a mixture of microspheres ranging from 0. 3–2. 2 μm in diam., as well as a mixed bacterial community. In contrast to current model assumptions, the contact probability was highest for microspheres of intermediate size (0. 9–1. 2 μm), but was not generally positively correlated with prey size over the whole prey size range. Capture and ingestion also proved to be involved in size selection: these patterns were also independent of the food concentration (p= 0.968 for Ochromonas, p= 0.971 for Spumella). Even though the capture rate was significantly higher for attached flagellates than for swimming flagellates (p 〈 0. 001), size selectivity was not affected (p 〉 0. 05). Our results indicate that: (i) size selection is not actively regulated by these flagellates, but is a passive process; (ii) contact probability is not generally positively correlated with prey size, but shows a maximum for intermediate-sized prey in the prey size spectrum of 0. 3–2. 2 μm; and (iii) selection steps other than contact probability are crucial for size selection and should be integrated in models on size selection.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    The @journal of eukaryotic microbiology 47 (2000), S. 0 
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: . High resolution video-microscopy was used to observe grazing patterns of the heterotrophic nanoflagellates Cafeteria roenbergensis, Bodo sultans, Spumella sp., and Ochromonas sp. Spumella and Ochromonas enclose food particles with pseudopodia while Cafeteria and Bodo engulf particles by invagination of the cell surface. The following parameters of the feeding process were quantified: frequency of flagellar beating, speed of particles in different positions of the feeding current, food size selection, feeding rate, and the time budget for the handling of particles. The mean handling times differed between 94 s for Cafeteria and 4 s for Ochromonas for ingested particles. Handling times for ingested particles were significantly longer than for non-captured particles. Long handling times were calculated to be disadvantageous only for flagellates which propel a high water volume per hour (esp. Ochromonas) or live in a bacteria-rich environment. Our model calculations may provide a reasonable theoretical explanation for a concentration-dependent behavioural variability of the feeding strategy of different heterotrophic nanoflagellates (HNF) species.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-01-26
    Keywords: Biomass as carbon per individual; Clearance rate per individual; EXP; Experiment; Nanoflagellates_FEEDEXP; Taxon/taxa; Treatment: temperature; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 15 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...