GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 620 (1991), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-6792
    Keywords: Magnetoencephalography ; Auditory evoked fields ; Current dipoles ; Magnetic resonance imaging ; Source localization ; Replicability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The replicability of dipole localizations between sessions in an unselected group of subjects was studied. Auditory evoked magnetic fields (AEMFs) in response to contralaterally and ipsilaterally presented 1 kHz tone bursts were recorded from the right hemisphere of 12 subjects with normal hearing in two replicate sessions several days apart. Three long-latency components of the AEMF were studied, occurring at latencies near 50 msec (P1m), near 100 msec (N1m) and near 165 msec (P2m). A spherical model of the head was used to fit equivalent-current dipoles to the data. Statistical analysis of dipole parameters revealed virtually no differences between the two testing sessions. The variability between sessions had a mean absolute difference of 3 to 10 mm for the spatial parameters. Comparison of dipole parameters between components showed that there was a replicable, but nonsignificant, trend for a difference in the location of the N1m from contralateral vs. ipsilateral stimulation, and a statistically significant confirmation that the P2m is located anterior to the N1m for contralateral stimulation. Magnetic resonance images from each subject were used to locate the dipoles near the primary auditory cortex in the Sylvian fissure.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...