GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-02-06
    Description: Arctic sea-ice loss is a leading indicator of climate change and can be attributed, in large part, to atmospheric forcing. Here, we show that recent ice reductions, weakening of the halocline, and shoaling of intermediate-depth Atlantic Water layer in the eastern Eurasian Basin have increased winter ventilation in the ocean interior, making this region structurally similar to that of the western Eurasian Basin. The associated enhanced release of oceanic heat has reduced winter sea-ice formation at a rate now comparable to losses from atmospheric thermodynamic forcing, thus explaining the recent reduction in sea-ice cover in the eastern Eurasian Basin. This encroaching “atlantification” of the Eurasian Basin represents an essential step toward a new Arctic climate state, with a substantially greater role for Atlantic inflows.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: The water mass structure of the Arctic Ocean is remarkable, for its intermediate (depth range ~150–900 m) layer is filled with warm (temperature 〉0°C) and salty water of Atlantic origin (usually called the Atlantic Water, AW). This water is carried into and through the Arctic Ocean by the pan-Arctic boundary current, which moves cyclonically along the basins’ margins (Fig. 1). This system provides the largest input of water, heat, and salt into the Arctic Ocean; the total quantity of heat is substantial, enough to melt the Arctic sea ice cover several times over. By utilizing an extensive archive of recently collected observational data, this study provides a cohesive picture of recent large-scale changes in the AW layer of the Arctic Ocean. These recent observations show the warm pulse of AW that entered the Arctic Ocean in the early 1990s finally reached the Canada Basin during the 2000s. The second warm pulse that entered the Arctic Ocean in the mid-2000s has moved through the Eurasian Basin and is en route downstream. One of the most intriguing results of these observations is the realization of the possibility of uptake of anomalous AW heat by overlying layers, with possible implications for an already-reduced Arctic ice cover.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-06-15
    Description: Arctic sea-ice loss is a leading indicator of climate change and can be attributed, in large part, to atmospheric forcing. Here, we show that recent ice reductions, weakening of the halocline, and shoaling of the intermediate-depth Atlantic Water layer in the eastern Eurasian Basin have increased winter ventilation in the ocean interior, making this region structurally similar to that of the western Eurasian Basin. The associated enhanced release of oceanic heat has reduced winter sea-ice formation at a rate now comparable to losses from atmospheric thermodynamic forcing, thus explaining the recent reduction in sea-ice cover in the eastern Eurasian Basin. This encroaching "atlantification" of the Eurasian Basin represents an essential step toward a new Arctic climate state, with a substantially greater role for Atlantic inflows.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 35 (2008): L19704, doi:10.1029/2008GL034791.
    Description: Sea ice drift data (from Russian North Pole stations, various ice camps, and the International Arctic Buoy Program) and surface wind stress data from the NCAR/NCEP Reanalysis are analyzed to determine their long-term trends and causality. The study finds that both parameters (ice drift and wind stress) show gradual acceleration over last 50 years. Significant positive trends are present in both winter and summer data. The major cause of observed positive trends is increasing Arctic storm activity over the Transpolar Drift Stream caused by a shift of storm tracks toward higher latitudes. It is speculated, with some observational evidence, that the increased stirring of the ocean by winds could hasten the transition of the Arctic toward a weakly stratified ocean with a potential for deep convection and a new sink for atmospheric CO2.
    Description: We are grateful for funding from the NASA Headquarters, NSF and IARC.
    Keywords: Climate variability ; Arctic and Antarctic oceanography ; Ice mechanics and air/sea/ice exchange processes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): C04S08, doi:10.1029/2006JC003916.
    Description: Monthly sea levels from five Arctic Ocean Model Intercomparison Project (AOMIP) models are analyzed and validated against observations in the Arctic Ocean. The AOMIP models are able to simulate variability of sea level reasonably well, but several improvements are needed to reduce model errors. It is suggested that the models will improve if their domains have a minimum depth less than 10 m. It is also recommended to take into account forcing associated with atmospheric loading, fast ice, and volume water fluxes representing Bering Strait inflow and river runoff. Several aspects of sea level variability in the Arctic Ocean are investigated based on updated observed sea level time series. The observed rate of sea level rise corrected for the glacial isostatic adjustment at 9 stations in the Kara, Laptev, and East Siberian seas for 1954–2006 is estimated as 0.250 cm/yr. There is a well pronounced decadal variability in the observed sea level time series. The 5-year running mean sea level signal correlates well with the annual Arctic Oscillation (AO) index and the sea level atmospheric pressure (SLP) at coastal stations and the North Pole. For 1954–2000 all model results reflect this correlation very well, indicating that the long-term model forcing and model reaction to the forcing are correct. Consistent with the influences of AO-driven processes, the sea level in the Arctic Ocean dropped significantly after 1990 and increased after the circulation regime changed from cyclonic to anticyclonic in 1997. In contrast, from 2000 to 2006 the sea level rose despite the stabilization of the AO index at its lowest values after 2000.
    Description: This research is supported by the National Science Foundation Office of Polar Programs (under cooperative agreements OPP- 0002239 and OPP- 0327664) with the International Arctic Research Center, University of Alaska Fairbanks, and by the Climate Change Prediction Program of the Department of Energy’s Office of Biological and Environmental Research. The development of the UW model is also supported by NASA grants NNG04GB03G and NNG04GH52G and NSF grants OPP-0240916 and OPP-0229429.
    Keywords: Arctic Ocean models ; Model validation ; Sea level variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Science 356 (2017): 285-291, doi:10.1126/science.aai8204.
    Description: Arctic sea-ice loss is a leading indicator of climate change and can be attributed, in large part, to atmospheric forcing. Here we show that recent ice reductions, weakening of the halocline, and shoaling of intermediate-depth Atlantic Water layer in the eastern Eurasian Basin have increased winter ventilation in the ocean interior, making this region structurally similar to that of the western Eurasian Basin. The associated enhanced release of oceanic heat has reduced winter sea-ice formation at a rate now comparable to losses from atmospheric thermodynamic forcing, thus explaining the recent reduction in sea-ice cover in the eastern Eurasian Basin. This encroaching “atlantification” of the Eurasian Basin represents an essential step toward a new Arctic climate state, with a substantially greater role for Atlantic inflows.
    Description: This study was supported by NSF grants #1203473 and #1249133 (AP, IP, MA, RR, VI), NOAA grant # NA15OAR4310155 (AP, IP, MA, RR, TB, VI) and by the A-TWAIN project, funded by the Arctic Ocean program at the FRAM-High North Research Centre for Climate and the Environment.
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 117 (2012): C00D13, doi:10.1029/2011JC007257.
    Description: Six Arctic Ocean Model Intercomparison Project model simulations are compared with estimates of sea ice thickness derived from pan-Arctic satellite freeboard measurements (2004–2008); airborne electromagnetic measurements (2001–2009); ice draft data from moored instruments in Fram Strait, the Greenland Sea, and the Beaufort Sea (1992–2008) and from submarines (1975–2000); and drill hole data from the Arctic basin, Laptev, and East Siberian marginal seas (1982–1986) and coastal stations (1998–2009). Despite an assessment of six models that differ in numerical methods, resolution, domain, forcing, and boundary conditions, the models generally overestimate the thickness of measured ice thinner than ∼2 m and underestimate the thickness of ice measured thicker than about ∼2 m. In the regions of flat immobile landfast ice (shallow Siberian Seas with depths less than 25–30 m), the models generally overestimate both the total observed sea ice thickness and rates of September and October ice growth from observations by more than 4 times and more than one standard deviation, respectively. The models do not reproduce conditions of fast ice formation and growth. Instead, the modeled fast ice is replaced with pack ice which drifts, generating ridges of increasing ice thickness, in addition to thermodynamic ice growth. Considering all observational data sets, the better correlations and smaller differences from observations are from the Estimating the Circulation and Climate of the Ocean, Phase II and Pan-Arctic Ice Ocean Modeling and Assimilation System models.
    Description: This research is supported by the National Science Foundation Office of Polar Programs covering awards of AOMIP collaborative research projects: ARC-0804180 (M.J.), ARC-0804010 (A.P.), ARC-0805141 (W.M.), ARC080789, and ARC0908769 (J.Z.). This research is also supported by the Russian Foundation of Basic Research, projects 09-05-00266 and 09-05-01231. At the National Oceanography Centre Southampton, this study was funded by the UK Natural Environment Research Council as a contribution to the Marine Centres’ Strategic Research Programme Oceans 2025.
    Description: 2012-09-15
    Keywords: AOMIP ; ICESat ; Ice thickness ; Sea ice
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C03042, doi:10.1029/2003JC002007.
    Description: Sea level is a natural integral indicator of climate variability. It reflects changes in practically all dynamic and thermodynamic processes of terrestrial, oceanic, atmospheric, and cryospheric origin. The use of estimates of sea level rise as an indicator of climate change therefore incurs the difficulty that the inferred sea level change is the net result of many individual effects of environmental forcing. Since some of these effects may offset others, the cause of the sea level response to climate change remains somewhat uncertain. This paper is focused on an attempt to provide first-order answers to two questions, namely, what is the rate of sea level change in the Arctic Ocean, and furthermore, what is the role of each of the individual contributing factors to observed Arctic Ocean sea level change? In seeking answers to these questions we have discovered that during the period 1954–1989 the observed sea level over the Russian sector of the Arctic Ocean is rising at a rate of approximately 0.123 cm yr−1 and that after correction for the process of glacial isostatic adjustment this rate is approximately 0.185 cm yr−1. There are two major causes of this rise. The first is associated with the steric effect of ocean expansion. This effect is responsible for a contribution of approximately 0.064 cm yr−1 to the total rate of rise (35%). The second most important factor is related to the ongoing decrease of sea level atmospheric pressure over the Arctic Ocean, which contributes 0.056 cm yr−1, or approximately 30% of the net positive sea level trend. A third contribution to the sea level increase involves wind action and the increase of cyclonic winds over the Arctic Ocean, which leads to sea level rise at a rate of 0.018 cm yr−1 or approximately 10% of the total. The combined effect of the sea level rise due to an increase of river runoff and the sea level fall due to a negative trend in precipitation minus evaporation over the ocean is close to 0. For the Russian sector of the Arctic Ocean it therefore appears that approximately 25% of the trend of 0.185 cm yr−1, a contribution of 0.048 cm yr−1, may be due to the effect of increasing Arctic Ocean mass.
    Description: This material is based upon work supported by the National Science Foundation under grant 0136432.
    Keywords: Arctic ; Sea level rise ; Decadal variability ; Steric effects ; Inverted barometer effect ; Glacial isostatic adjustment
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...