GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 111 . C09007.
    Publication Date: 2018-04-19
    Description: There is growing concern about the transfer of methane originating from water bodies to the atmosphere. Methane from sediments can reach the atmosphere directly via bubbles or indirectly via vertical turbulent transport. This work quantifies methane gas bubble dissolution using a combination of bubble modeling and acoustic observations of rising bubbles to determine what fraction of the methane transported by bubbles will reach the atmosphere. The bubble model predicts the evolving bubble size, gas composition, and rise distance and is suitable for almost all aquatic environments. The model was validated using methane and argon bubble dissolution measurements obtained from the literature for deep, oxic, saline water with excellent results. Methane bubbles from within the hydrate stability zone (typically below ∼500 m water depth in the ocean) are believed to form an outer hydrate rim. To explain the subsequent slow dissolution, a model calibration was performed using bubble dissolution data from the literature measured within the hydrate stability zone. The calibrated model explains the impressively tall flares (〉1300 m) observed in the hydrate stability zone of the Black Sea. This study suggests that only a small amount of methane reaches the surface at active seep sites in the Black Sea, and this only from very shallow water areas (〈100 m). Clearly, the Black Sea and the ocean are rather effective barriers against the transfer of bubble methane to the atmosphere, although substantial amounts of methane may reach the surface in shallow lakes and reservoirs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-08-03
    Description: The Dnepr paleo-delta area in the NW Black Sea is characterized by an abundant presence of methane seeps. During the expeditions of May–June 2003 and 2004 within the EU-funded CRIMEA project, detailed multibeam, seismic and hydro-acoustic water-column investigations were carried out to study the relation between the spatial distribution of methane seeps, sea-floor morphology and sub-surface structures. 2778 new methane seeps were detected on echosounding records in an area of 1540 km2. All seeps are located in the transition zone between the continental shelf and slope, in water depths of 66 to 825 m. The integration of the different geophysical datasets clearly indicates that methane seeps are not randomly distributed in this area, but are concentrated in specific locations. The depth limit for the majority of the detected seeps is 725 m water depth, which corresponds more or less with the stability limit for pure methane hydrate at the ambient bottom temperature (8.9 °C) in this part of the Black Sea. This suggests that, where gas hydrates are stable, they play the role of buffer for the upward migration of methane gas and thus prevent seepage of methane bubbles into the water column. Higher up on the margin, gas seeps are widespread, but accurate mapping illustrates that seeps occur preferentially in association with particular morphological and sub-surface features. On the shelf, the highest concentration of seeps is found in elongated depressions (pockmarks) above the margins of filled channels. On the continental slope where no pockmarks have been observed, seepage occurs along crests of sedimentary ridges. There, seepage is focussed by a parallel-stratified sediment cover that thins out towards the ridge crests. On the slope, seepage also appears in the vicinity of canyons (bottom, flanks and margins) or near the scarps of submarine landslides where mass-wasting breaches the fine-grained sediment cover that acts as a stratigraphic seal. The seismic data show the presence of a distinct “gas front,” which has been used to map the depth of the free gas within the sea-floor sediments. The depth of this gas front is variable and locally domes up to the sea floor. Where the gas front approaches the seafloor, gas bubbles were detected in the water column. A regional map of the sub-surface depth of the gas front emphasises this “gas front-versus-seep” relationship. The integration of all data sets indicates that the spatial distribution of methane seeps in the Dnepr paleo-delta is mainly controlled by the gas-hydrate stability zone as well as by stratigraphic and sedimentary factors.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...