GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of volcanology 52 (1989), S. 49-56 
    ISSN: 1432-0819
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Gas accumulation in magma may be aided by coalescence of bubbles because large coalesced bubbles rise faster than small bubbles. The observed size distribution of gas bubbles (vesicles) in lava flows supports the concept of post-eruptive coalescence. A numerical model predicts the effects of rise and coalescence consistent with observed features. The model uses given values for flow thickness, viscosity, volume percentage of gas bubbles, and an initial size distribution of bubbles together with a gravitational collection kernel to numerically integrate the stochastic collection equation and thereby compute a new size spectrum of bubbles after each time increment of conductive cooling of the flow. Bubbles rise and coalesce within a fluid interior sandwiched between fronts of solidification that advance inward with time from top and bottom. Bubbles that are overtaken by the solidification fronts cease to migrate. The model predicts the formation of upper and lower vesicle-rich zones separated by a vesicle-poor interior. The upper zone is broader, more vesicular, and has larger bubbles than the lower zone. Basaltic lava flows in northern California exhibit the predicted zonation of vesicularity and size distribution of vesicles as determined by an impregnation technique. In particular, the size distribution at the tops and bottoms of flows is essentially the same as the initial distribution, reflecting the rapid initial solidification at the bases and tops of the flows. Many large vesicles are present in the upper vesicular zones, consistent with expected formation as a result of bubble coalescence during solidification of the lava flows. Both the rocks and model show a bimodal or trimodal size distribution for the upper vesicular zone. This polymodality is explained by preferential coalescence of larger bubbles with subequal sizes. Vesicularity and vesicle size distribution are sensitive to atmospheric pressure because bubbles expand as they decompress during rise through the flow. The ratio of vesicularity in the upper to that in the lower part of a flow therefore depends not only on bubble rise and coalescence, but also on flow thickness and atmospheric pressure. Application of simple theory to the natural basalts suggests solidification of the basalts at 1.0±0.2 atm, consistent with the present atmospheric pressure. Paleobathymetry and paleoaltimetry are possible in view of the sensitivity of vesicle size distributions to atmospheric pressure. Thus, vesicular lava flows can be used to crudely estimate ancient elevations and/or sea level air pressure.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 377 (1995), S. 612-616 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] It has commonly been assumed that silicic magmas only become gas-saturated during shallow ascent and eruption, or during the final pegmatitic stages of plutonic crystallization. But trapped inclusions of gas or fluid in volcanic phenocrysts provide direct evidence that an exsolved gas ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 103 (1989), S. 187-198 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Olivine phenocrysts in the picritic scoria that erupted from Kilauea Iki in 1959 occur as glomeroporphyritic aggregates of 2–16 crystals. The compositions and three-dimensional textures of the olivines vary within an aggregate and within individual lapilli. The attachment of crystals from different environments indicates that these aggregates formed by synneusis — the swimming together of crystals. Most of the crystals are attached along faces with their a crystallographic axes parallel and their c axes either parallel or perpendicular, so that the structural mismatch and interfacial energy are minimized. Observed facial attachments are consistent with fluid dynamical interactions of crystals falling with their large {010} faces horizontal. The aggregates formed in a liquid-rich magma. Rough computations suggest that the minimum aggregation time could be on the order of minutes. Aggregation of very small crystals suggests that the yield strength was less than 3 dynes cm−2. The textures of the aggregates are similar to those of cumulate peridotites.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 110 (1992), S. 113-120 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Melt inclusions in quartz phenocrysts from a single clast of pumice near the base of the plinian pumice fall of the Bishop Tuff were studied to test ideas concerning separation of melt and crystals in silicic magmas. Ten analyzed inclusions from the pumice clast are of high silica rhyolite composition with very low contents of the highly compatible elements Ba, Sr, and Eu, consistent with extensive fractionation. The concentrations of U, La, Ce, Mg, and Ca of these ten melt inclusions vary considerably as determined by ion microprobe. Petrologic considerations indicate that uranium is an incompatible element with a maximum bulk partition coefficient D of about 0.2 and that the evolution of the uranium content of the melt was controlled by crystallization of the magma. A minimum of 33 wt% perfect fractional crystallization is required to explain the observed range in uranium. However, only 17 wt% crystals occurred in the pumice clast. The greater calculated fraction of crystals requires significant separation of crystals and melt before the eruption of the plinian pumice fall in spite of the fact that crystal mixing (settling, etc.) did not occur in the Bishop magma.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 112 (1992), S. 148-148 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 87 (1984), S. 120-128 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The products of the 1974 eruption of Fuego, a subduction zone volcano in Guatemala, have been investigated through study of silicate melt inclusions in olivine. The melt inclusions sampled liquids in regions where olivine, plagioclase, magnetite, and augite were precipitating. Comparisons of the erupted ash, groundmass, and melt inclusion compositions suggest that the inclusions represent samples of liquids present in a thermal boundary layer of the magma body. The concentrations of H2O and CO2 in glass inclusions were determined by a vacuum fusion manometric technique using individual olivine crystals (Fo77 to Fo71) with glass inclusion compositions that ranged from high-alumina basalt to basaltic andesite. Water, Cl, and K2O concentrations increased by a factor of two as the olivine crystals became more iron-rich (Fo77 to Fo71) and as the glass inclusions increased in SiO2 from 51 to 54 wt.% SiO2. The concentration of H2O in the melt increased from 1.6 wt.% in the least differentiated liquid to about 3.5% in a more differentiated liquid. Carbon dioxide is about an order of magnitude less abundant than H2O in these inclusions. The gas saturation pressures for pure H2O in equilibrium with the melt inclusions, which were calculated from the glass inclusion compositions using the solubility model of Burnham (1979), are given approximately by P(H2O)(Pa)=(SiO2−48.5 wt.%) × 1.45 × 107. The concentrations of water in the melt and the gas saturation pressures increased from about 1.5% to 3.5% and from 300 to 850 bars, respectively, during pre-eruption crystallization.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...