GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    ISSN: 1572-9788
    Schlagwort(e): antisense DNA ; co-transformation ; nucleocapsid gene ; pathogen-derived resistance ; somatic embryogenesis ; transformation
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Notizen: Abstract Peanut (Arachis hypogaea L.) lines transgenic for the antisense nucleocapsid (N) gene of a Tomato spotted wilt virus (TSWV) strain isolated from peanut were generated by microprojectile-mediated transformation of repetitive somatic embryos of cultivars VC1 and AT120. The selectable marker (hygromycin resistance) and the N gene were on separate plasmids. A total of 207 VC1 and 120 AT120 hygromycin-resistant lines were produced. Of all the VC1 plants recovered 71% were cotransformed with the N gene (N+), but all plants were sterile. For AT120, 48 of the transgenic cell lines converted into plants. Polymerase chain reaction (PCR) screening showed 15 of the lines were transgenic for the N gene (N+), and two of these lines were fertile. A field test was conducted in 1998 at Ashburn, GA, using seeds from each fertile line, along with segregated and non-transgenic controls. Plants from four randomly selected field plots were examined for symptoms and analyzed by double-antibody sandwich enzyme-linked immunoabsorbent assay and PCR at 10 and 14 weeks after planting. At 14 weeks, 76% of the N+ plants were symptomless, while 2% were severely symptomatic or dead. In contrast, only 42% of the plants lacking the N gene were symptomless and 50% were severely symptomatic or dead. Northern blot analysis of selected field-resistant plants detected transgene RNA, and the transcript level appeared undiminished after viral exposure.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2011-11-01
    Beschreibung: The flow of deep-sea turbidity currents in meandering channels has been of considerable recent interest. Here we focus on the secondary flow associated with a subaqueous bottom current in a meandering channel. For simplicity, a saline bottom current can be used as a surrogate for a turbidity current driven by a dilute suspension of fine-grained sediment that does not easily settle out. In the case of open-channel flow, i.e., rivers, the classical Rozovskiian paradigm is often invoked to explain secondary flow in meandering channels. This paradigm indicates that the near-bottom secondary flow in a bend is directed inward, i.e., toward the inner bank. It has recently been suggested based on experimental and theoretical considerations, however, that this pattern is reversed in the case of subaqueous bottom flows in meandering channels, so that the near-bottom secondary flow is directed outward (reversed secondary flow), towards the outer bank. Experimental results presented here, on the other hand, indicate near-bottom secondary flows that have the same direction as observed in a river (normal secondary flow). The implication is an apparent contradiction between experimental results. We use theory, experiments, and reconstructions of case studies from field-scale flows to resolve this apparent contradiction based on the densimetric Froude number of the flow. We find three ranges of densimetric Froude number, such that a) in an upper regime, secondary flow is reversed, b) in a middle regime, it is normal, and c) in a lower regime, it is reversed. We apply our results at field scale to previous studies on channel-forming turbidity currents in the Amazon submarine canyon fan system (Amazon Channel) and the Monterey Canyon and a saline underflow in the Black Sea flowing from the Bosphorus. Our analysis indicates that secondary flow should be normal throughout most of the Amazon submarine fan reach, lower-regime reversed in the case of the Black Sea underflow, and upper-regime reversed in the case of the Monterey canyon. The theoretical analysis predicts both normal and reversed regimes in the Amazon submarine canyon reach.
    Print ISSN: 1527-1404
    Thema: Geologie und Paläontologie
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...