GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 421 (2003), S. 360-363 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Postcopulatory sexual selection comprises both sperm competition, where the sperm from different males compete for fertilization, and cryptic female choice, where females bias sperm use in favour of particular males. Despite intense current interest in both processes as potential agents of ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-10-04
    Description: The Antarctic silverfish (Pleuragramma antarctica) is a critically important forage species with a circumpolar distribution and is unique among other notothenioid species for its wholly pelagic life cycle. Previous studies have provided mixed evidence of population structure over regional and circumpolar scales. The aim of the present study was to test the recent population hypothesis for Antarctic silverfish, which emphasizes the interplay between life history and hydrography in shaping connectivity. A total of 1067 individuals were collected over 25 years from different locations on a circumpolar scale. Samples were genotyped at fifteen microsatellites to assess population differentiation and genetic structuring using clustering methods, F-statistics, and hierarchical analysis of variance. A lack of differentiation was found between locations connected by the Antarctic Slope Front Current (ASF), indicative of high levels of gene flow. However, gene flow was significantly reduced at the South Orkney Islands and the western Antarctic Peninsula where the ASF is absent. This pattern of gene flow emphasized the relevance of large-scale circulation as a mechanism for circumpolar connectivity. Chaotic genetic patchiness characterized population structure over time, with varying patterns of differentiation observed between years, accompanied by heterogeneous standard length distributions. The present study supports a more nuanced version of the genetic panmixia hypothesis that reflects physical-biological interactions over the life history.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-03-04
    Description: Chamelea gallina is a valuable commercial species in the Mediterranean Sea. The strong fishing pressure on C. gallina in the northern and central Adriatic Sea has paralleled a clear-cut decrease in clam population density and the occurrence of several irregular mortality events. Despite the commercial interest in this species, nothing is known about its genetic sub-structuring at the geographic and/or temporal scale, nor its levels of genetic variability. Analyzing microsatellite genotypes for samples collected in the Adriatic Sea, we detected large geographic genetic homogeneity with gene flow guided by broad scale circulation in the north-south direction. Our results also indicate weak genetic differentiation among size classes at the local and temporal scale. These small genetic differences might be determined by variability of local circulation and reproductive success, partial overlapping generations and high larval mortality rates as suggested by our estimates of the effective number of breeders. In fact, global effective population size estimates over multiple generations are medium-high, but a low number of breeders are responsible for the small clams size class recruitment. Notwithstanding, it was not possible to detect signatures of bottleneck. Future efforts in fishery management should aim to maintain genetic diversity – essential to the long-term sustainability of the resource – and limit effective population size fluctuations while considering the need to improve water quality to avoid mass mortality events. Keywords: Microsatellite; Clam fishery; Bivalvia; Adriatic Sea; Effective population size; Gene flow
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-03-08
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-01-10
    Description: Antarctic fish belonging to Notothenioidei represent an extraordinary example of radiation in the cold. In addition to the absence of hemoglobin, icefish show a number of other striking peculiarities including large-diameter blood vessels, high vascular densities, mitochondriarich muscle cells, and unusual mitochondrial architecture. In order to investigate the bases of icefish adaptation to the extreme Southern Ocean conditions we sequenced the complete genome of the icefish Chionodraco myersi. Comparative analyses of the icefish genome with those of other teleost species, including two additional white-blooded and five red-blooded notothenioids, provided a new perspective on the evolutionary loss of globin genes. Muscle transcriptome comparative analyses against red-blooded notothenioids as well as temperate fish revealed the peculiar regulation of genes involved in mitochondrial function in icefish. Gene duplication and promoter sequence divergence were identified as genome-wide patterns that likely contributed to the broad transcriptional program underlying the unique features of icefish mitochondria.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-17
    Description: The identification of loci under selection (out- liers) is a major challenge in evolutionary biology, being critical to comprehend evolutionary processes leading to population differentiation and speciation, and for conser- vation purposes, also in light of recent climate change. However, detection of selected loci can be difficult when populations are weakly differentiated. This is the case of marine fish populations, often characterized by high levels of gene flow and connectivity, and particularly of fish living in the Antarctic marine environment, characterized by a complex and strong circulating system promoting individual dispersal all around the continent. With the final aim of identifying outlier loci putatively under selection in the Chionodraco genus, we used 21 microsatellites, including both genomic (Type II) and EST-linked loci (Type I), to investigate the genetic differentiation among the three recently derived Chionodraco species that are endemic to the freezing Antarctic waters. Neutrality tests were applied in interspecific comparisons in order to identify candidate loci showing high levels of genetic dif- ferentiation, which might reveal imprints of past selection. Three outlier loci were identified, detecting a higher dif- ferentiation between species than did neutral loci. Outliers showed sequence similarity to a calmodulin gene, to an antifreeze glycoprotein/trypsinogen-like protease gene and to nonannotated fish mRNAs. Selective pressures acting on outlier loci identified in this study might reflect past evo- lutionary processes, which led to species divergence and local adaptation in the Chionodraco genus. Used loci will provide a valuable tool for future population genetic studies in Antarctic notothenioids.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-16
    Description: Fish of the suborder Notothenioidei have successfully radiated into the Southern Ocean and today comprise the dominant fish sub-order in Antarctic waters in terms of biomass and species abundance. During evolution in the cold and stable Antarctic climate, the Antarctic lineage of notothenioids developed several unique physiological adaptations, which make them extremely vulnerable to the rapid warming of Antarctic waters currently observed. Only recently, a further phenomenon exclusive to notothenioid fish was reported: the translocation of the mitochondrial gene encoding the NADH Dehydrogenase subunit 6 (ND6), an indispensable part of complex I in the mitochondrial electron transport system. This study investigated the potential physiological consequences of ND6 translocation for the function and thermal sensitivity of the electron transport system in isolated liver mitochondria of the two nototheniid species Notothenia coriiceps and Notothenia rossii, with special attention to the contributions of complex I (NADH DH) and complex II (Succinate DH) to oxidative phosphorylation. Furthermore, enzymatic activities of NADH:Cytochrome c Oxidoreductase and Cytochrome C Oxidase were measured in membrane-enriched tissue extracts. During acute thermal challenge (0–15uC), capacities of mitochondrial respiration and enzymatic function in the liver could only be increased until 9uC. Mitochondrial complex I (NADH Dehydrogenase) was fully functional but displayed a higher thermal sensitivity than the other complexes of the electron transport system, which may specifically result from its unique amino acid composition, revealing a lower degree of stability in notothenioids in general. We interpret the translocation of ND6 as functionally neutral but the change in amino acid sequence as adaptive and supportive of cold stenothermy in Antarctic nototheniids. From these findings, an enhanced sensitivity to ocean warming can be deduced for Antarctic notothenioid fish.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-06-16
    Description: Genetic drift and non-random mating seldom influence species with large breeding populations and high dispersal potential, characterized by unstructured gene pool and panmixia at a scale lower than the minimum dispersal range of individuals. In the present study, a set of nine microsatellite markers was developed and used to investigate the spatio-temporal genetic patterns of the holoplanktonic jellyfish Pelagia noctiluca (Scyphozoa) in the Southern Tyrrhenian Sea. Homozygote excess was detected at eight loci, and individuals exhibited intra-population relatedness higher than expected by chance in at least three samples. This result was supported by the presence of siblings in at least 5 out 8 samples, 4 of which contained full-sib in addition to half-sib dyads. Having tested and ruled out alternative explanations as null alleles, our results suggest the influence of reproductive and behavioural features in shaping the genetic structure of P. noctiluca, as outcomes of population genetics analyses pointed out. Indeed, the genetic differentiation among populations was globally small but highlighted: a) a spatial genetic patchiness uncorrelated with distance between sampling locations, and b) a significant genetic heterogeneity between samples collected in the same locations in different years. Therefore, despite its extreme dispersal potential, P. noctiluca does not maintain a single homogenous population, but rather these jellyfish appear to have intra-bloom localized recruitment and/or individual cohesiveness, whereby siblings more likely swarm together as a single group and remain close after spawning events. These findings provide the first evidence of family structures and consequent genetic patchiness in a species with highly dispersive potential throughout its whole life cycle, contributing to understanding the patterns of dispersal and connectivity in marine environments.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Boissin, E., Neglia, V., Baksay, S., Micu, D., Bat, L., Topaloglu, B., Todorova, V., Panayotova, M., Kruschel, C., Milchakova, N., Voutsinas, E., Beqiraj, S., Nasto, I., Aglieri, G., Taviani, M., Zane, L., & Planes, S. Chaotic genetic structure and past demographic expansion of the invasive gastropod Tritia neritea in its native range, the Mediterranean Sea. Scientific Reports, 10(1), (2020): 21624. doi:10.1038/s41598-020-77742-3.
    Description: To better predict population evolution of invasive species in introduced areas it is critical to identify and understand the mechanisms driving genetic diversity and structure in their native range. Here, we combined analyses of the mitochondrial COI gene and 11 microsatellite markers to investigate both past demographic history and contemporaneous genetic structure in the native area of the gastropod Tritia neritea, using Bayesian skyline plots (BSP), multivariate analyses and Bayesian clustering. The BSP framework revealed population expansions, dated after the last glacial maximum. The haplotype network revealed a strong geographic clustering. Multivariate analyses and Bayesian clustering highlighted the strong genetic structure at all scales, between the Black Sea and the Adriatic Sea, but also within basins. Within basins, a random pattern of genetic patchiness was observed, suggesting a superimposition of processes involving natural biological effects (no larval phase and thus limited larval dispersal) and putative anthropogenic transport of specimens. Contrary to the introduced area, no isolation-by-distance patterns were recovered in the Mediterranean or the Black Seas, highlighting different mechanisms at play on both native and introduced areas, triggering unknown consequences for species’ evolutionary trajectories. These results of Tritia neritea populations on its native range highlight a mixture of ancient and recent processes, with the effects of paleoclimates and life history traits likely tangled with the effects of human-mediated dispersal.
    Description: This project was funded by the European FP7 CoCoNet project (Ocean.2011-4, grant agreement #287844) and we are grateful to the whole CoCoNET consortium. We are grateful to the following people for their critical help with logistics and field work ‘Antheus srl (Lecce, Italy)’; S Bevilacqua, G Guarnieri, S Fraschetti and T Terlizzi (University of Salento, Italy); L Angeletti and M Sigovini (ISMAR, Italy); D Shamrey (IBSS, Sevastopol); A Anastasopoulou, MA Pancucci-Papadopoulou and S Reizopoulou (HCMR, Greece) and E Hajdëri (Catholic University ‘Our Lady of Good Counsel’, Tirana). Thank you to J Almany for English corrections. This is ISMAR-CNR scientific contribution n1987. E Boissin was supported by a European Marie Curie postdoctoral fellowship MC-CIG-618480.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...