GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1574-6941
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Separation of low-density sediment detritus in CsCl solution is a promising technique for benthic studies. The known toxicity of CsCl suggests the possibility of toxicity in the separated sediment. Fluoranthene biodegradation by Mycobacterium strain PC01 was used to probe microbial activity in sediment following density separation. Complete inhibition of biodegradation occurred in sediment previously contacted with CsCl media, but washing eliminated inhibition. Washing may not be preferable for subsequent study of the separated sediment, suggesting the need for less toxic media. We studied how various density separation media affected the viability of Escherichia coli to quantify toxicity. Although all media decreased viability, Nycodenz® and metrizamide were one to three orders of magnitude less toxic to bacteria than CsCl or Na2WO4. Toxicity was generally related to ionic strength. These results demonstrate that iodinated benzoic acids are superior to metal salts solutions for preserving biological activity on separated sediment or soil.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1574-6941
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Reductive dechlorination of polychlorinated biphenyls (PCBs) pre-existing (at ∼1 mg kg−1) in a marine sediment of Porto Marghera (Venice Lagoon, Italy) was investigated in anaerobic slurries developed in water of the same contaminated site. Some microcosms were pasteurized whereas others were amended with 2-bromoethanesulfonic acid, molybdate or eubacteria-inhibiting antibiotics (without and in the presence of exogenous carbon sources) to preliminarily characterize the microbial populations involved in the process. Bioconversion of highly chlorinated PCBs into tri- and di-chlorinated, ortho-substituted biphenyls was detected from the 11th week of incubation both in the non-amended and in the pasteurized microcosms, where a significant consumption of sulfate and no methane production were observed. Conversely, no significant PCB transformation was detected in the microcosms with molybdate, where no sulfate consumption and a significant methane evolution occurred. Neither was PCB transformation observed in the microcosms supplemented with antibiotics and exogenous carbon sources, where a strong methane evolution and no sulfate consumption were recorded until the 11th week. The addition of exogenous 2,3,4,5,6-pentachlorobiphenyl showed preferential dechlorination at the meta and para positions, and did not significantly influence the onset of pre-existing PCB dechlorination. These results indicate that endogenous PCBs pre-existing in the marine sediment underwent reductive dechlorination. They also suggest that the process was not ‘primed’ upon 2,3,4,5,6-pentachlorobiphenyl addition, and was likely to be mediated by sulfate-reducing, spore-forming bacteria.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology ecology 48 (2004), S. 0 
    ISSN: 1574-6941
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: A novel anaerobic bacterium was isolated from the sediment of Onondaga Lake (Syracuse, NY), which can use arsenate [As(V)] as a respiratory electron acceptor. The isolate, designated strain Y5 is a spore-forming, motile rod, with lateral flagella. It is Gram-negative though it phylogenetically falls within the low G + C Gram-positive organisms. In addition to the more usual electron donors such as lactate and succinate, strain Y5 also can use H2+ CO2 chemoautotrophically and metabolize aromatic compounds such as syringic acid, ferulic acid, phenol, benzoate and toluene, coupled to arsenate reduction. Aside from As(V), nitrate, sulfate, thiosulfate and Fe(III) can also serve as electron acceptors. Based on 16S rDNA phylogeny and its physiological characteristics, strain Y5 was identified as most closely related to the genus Desulfosporosinus. The ability of microorganisms to reduce arsenate for respiration appears to be widely distributed and may be relevant in the biogeochemical cycling of arsenic in environments containing mixed contaminants.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1574-6941
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The characterization of sulfate-reducing bacteria (SRBs) is presented using the dissimilatory sulfite reductase (dsrAB) gene from various samples capable of mineralizing petroleum components. These samples include several novel, sulfidogenic pure cultures which degrade alkanes, toluene, and tribromophenol. Additionally, we have sulfidogenic consortia which re-mineralize benzene, naphthalene, 2-methylnaphthalene, and phenanthrene as a sole carbon source. In this study, 22 new dsrAB genes were cloned and sequenced. The dsrAB genes from our pollutant-degrading cultures or consortia were distributed among known SRBs and previously described dsrAB environmental clones, suggesting that many biodegradative SRBs are phylogenetically distinct and geographically wide spread. Specifically, the same dsrAB gene was discovered in independently established consortia capable of benzene, phenanthrene, and methylnaphthalene degradation, indicating that this particular SRB may be a key player in anaerobic degradation of hydrocarbons in the environment.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 38 (1986), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract From polluted river sediment, two bacterial species were isolated which utilized p-cresol as the sole source of carbon when grown in coculture under nitrate-reducing conditions. One species, PC-07, metabolized p-cresol (pCr) anaerobically to p-hydroxybenzoate (pOHB), which in turn was further metabolized by the second isolate, PB-04. The PC-07 isolate was unable to degrade and utilize pOHB, and PB-04 was unable to utilize pCr, thereby demonstrating a syntrophic relationship for pCr utilization under anaerobic conditions. Nitrate served as external electron acceptor for both microorganisms under anaerobic conditions and was reduced via NO2− and N2O to N2. pCr, therefore, appears to be metabolized to ring fission products via the formation of pOHB under nitrate reducing conditions, with the metabolism being mediated by a 2-member microbiol food chain.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Current Opinion in Biotechnology 2 (1991), S. 429-435 
    ISSN: 0958-1669
    Keywords: [abr] AMO; ammonia monooxygenase ; [abr] BTX; benzene/toluene/xylenes ; [abr] CB; chlorobenzoate ; [abr] PCB; polychlorinated biphenyl ; [abr] PCE; perchloroethylene ; [abr] TCE; trichloroethylene ; [abr] sMMO; soluble methane monooxygenase
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Medicine , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Microbial ecology 33 (1997), S. 206 -215 
    ISSN: 1432-184X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Ferulic and syringic acids are methoxylated aromatic compounds that often serve as models of the subunits of lignin. Although these compounds have important implications for global carbon cycles, there is limited information on their fate in anoxic environments. Enrichment cultures were established on these two model compounds under methanogenic, sulfidogenic, and denitrifying conditions, using a Raritan River (New Jersey) marsh sediment as the inoculum. All cultures completely degraded ∼1.5 mm of both substrates. Methane production in the methanogenic cultures corresponded to the stoichiometric values expected for complete mineralization to CO2 and CH4. Sulfate and nitrate reduction in their respective cultures were both greater than 60% of the amounts predicted for complete mineralization. Aromatic intermediates of ferulic and syringic acid metabolism were identified, and pathways of degradation under sulfidogenic and denitrifying conditions are proposed. Syringic acid is sequentially O-demethylated to gallic acid under both sulfate and nitrate-reducing conditions before ring cleavage occurs. Ferulic acid undergoes propenoate side chain reduction, O-demethylation, removal of an acetate moiety from the side chain, and decarboxylation to form catechol. Catechol is further degraded under sulfidogenic conditions. Under denitrifying conditions, ferulic acid undergoes loss of an acetate moiety, prior to O-demethylation, to form protocatechuic acid, the last product detected before ring cleavage.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Biodegradation 10 (1999), S. 15-25 
    ISSN: 1572-9729
    Keywords: anaerobic ; biodegradation ; BTEX ; gasoline ; hydrocarbons
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We examined the extent of biodegradation of benzene, toluene, ethylbenzene and the three isomers of xylene (BTEX) as a mixture and from gasoline in four different sediments: the New York/New Jersey Harbor estuary (polluted); Tuckerton, N.J. (pristine); Onondaga Lake, N.Y. (polluted) and Blue Mtn. Lake, N.Y. (pristine). Enrichment cultures were established with each sediment using denitrifying, sulfidogenic, methanogenic and iron reducing media, as well as site water. BTEX loss, as measured by GC-FID, was extensive in the sediments which had a long history of pollution, with all compounds being utilized within 21–91 days in the most active cultures, and was very slight or non-existent in the pristine sediments. Also, the pattern of loss was different under the various reducing conditions within each sediment and between sediments. For example benzene loss was only observed in sulfidogenic cultures from the NY/NJ Harbor sediments while toluene was degraded under all redox conditions. The loss of BTEX was correlated to the reduction of the various electron acceptors. In cultures amended with gasoline the degradation was much slower and incomplete. These results show that the fate of the different BTEX components in anoxic sediments is dependent on the prevailing redox conditions as well as on the characteristics and pollution history of the sediment.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...