GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Ocean-atmosphere interaction ; Climatic changes ; Konferenzschrift ; Aufsatzsammlung ; Klimaänderung ; Meer ; Atmosphäre ; Wechselwirkung
    Type of Medium: Book
    Pages: VII, 405 S , Ill., graph. Darst., Kt
    ISBN: 0875904122
    Series Statement: Geophysical monograph series 147
    DDC: 551.5246
    RVK:
    Language: English
    Note: Includes bibliographical references
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Meereskunde ; Wechselwirkung ; Atmosphäre ; Klimaschwankung ; Klimaänderung
    Description / Table of Contents: Coupled atmosphere-ocean dynamics of climate variability and climate change presents the patterns, mechanisms, and predictability of climate variability and anthropogenic climate change. Based on a graduate course the author has taught over 25 years, this book provides the physical foundation for those who are interested in fundamental questions such as: why climate varies from one year to another; how predictable climate is; and how climate will change in the face of increasing greenhouse gases in the atmosphere. This is the first comprehensive and systematic treatment of this subject that simultaneously draws on the latest research and is accessible for graduate students. The book takes a step-by-step systematic approach to coupled ocean-atmosphere interactions. This allows a wide range of comparative views: climate modes among and across different tropical ocean basins, ocean feedback on the atmosphere (in and out of the tropics), and spontaneous internal oscillation versus externally forced climate change. Such comparative views offer unprecedented insight into the dynamics of climate variability and predictability. This book can be used as supplementary reading for advanced undergraduate students, as coursework in climate dynamics, modeling, variability, and change, and as a reference book and research monograph for researchers in ocean, atmospheric, climate, and earth system sciences.
    Type of Medium: Book
    Pages: VIII, 424 Seiten , Illustrationen, Diagramme
    ISBN: 0323954901 , 9780323954907
    RVK:
    Language: English
    Note: Delivers the first authored textbook on ocean-atmosphere interactions that give rise to climate variability/predictability and shape regional patterns of anthropogenic climate change
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Tokyo :Springer Japan,
    Keywords: Oceanography. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (153 pages)
    Edition: 1st ed.
    ISBN: 9784431541622
    Series Statement: Springer Oceanography Series
    DDC: 551.46
    Language: English
    Note: Intro -- New Developments in Mode-Water Research -- New developments in mode-water research: an introduction -- Contents -- Progress of North Pacific mode water research in the past decade -- Review on North Pacific Subtropical Countercurrents and Subtropical Fronts: role of mode waters in ocean circulation and climate -- New perspectives on eighteen-degree water formation in the North Atlantic -- Mixed layer depth front and subduction of low potential vorticity water under seasonal forcings in an idealized OGCM -- The role of meso-scale eddies in mixed layer deepening and mode water formation in the western North Pacific -- Roles of mode waters in the formation and maintenance of central water in the North Pacific -- Interannual variations of the Hawaiian Lee Countercurrent induced by potential vorticity variability in the subsurface -- Interannual variations in low potential vorticity water and the subtropical countercurrent in an eddy-resolving OGCM -- Interannual variability of the North Pacific Subtropical Countercurrent: role of local ocean-atmosphere interaction -- Response of the North Pacific subtropical countercurrent and its variability to global warming.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Meteorology and Atmospheric Physics 122 (2013): 19-32, doi:10.1007/s00703-013-0275-3.
    Description: The effect of pre-storm subsurface thermal structure on the intensity of hurricane Katrina (2005) is examined using a regional coupled model. The Estimating Circulation and Climate of Ocean (ECCO) ocean state estimate is used to initialize the ocean component of the coupled model, and the source of deficiencies in the simulation of Katrina intensity is investigated in relation to the initial depth of 26°C isotherm (D26). The model underestimates the intensity of Katrina partly due to shallow D26 in ECCO. Sensitivity tests with various ECCO initial fields indicate that the correct relationship between intensity and D26 cannot be derived because D26 variability is underestimated in ECCO. A series of idealized experiments is carried out by modifying initial ECCO D26 to match the observed range. A more reasonable relationship between Katrina’s intensity and pre-storm D26 emerges: the intensity is much more sensitive to D26 than to sea surface temperature (SST). Ocean mixed layer process plays a critical role in modulating inner-core SSTs when D26 is deep, reducing mixed layer cooling and lowering the center pressure of the Katrina. Our result lends strong support to the notion that accurate initialization of pre-storm subsurface thermal structure in prediction models is critical for a skillful forecast of intensity of Katrina and likely other intense storms.
    Description: HS and SPX thank the support from NSF, NOAA, NASA and Japan Agency for Marine-Earth Science and Technology. HS acknowledges support from the Penzance Endowed Fund in Support of Assistant Scientists at WHOI.
    Description: 2014-10-01
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 28 (2015): 8574–8584, doi:10.1175/JCLI-D-14-00809.1.
    Description: The subsurface ocean response to anthropogenic climate forcing remains poorly characterized. From the Coupled Model Intercomparison Project (CMIP), a robust response of the lower thermocline is identified, where the warming is considerably weaker in the subtropics than in the tropics and high latitudes. The lower thermocline change is inversely proportional to the thermocline depth in the present climatology. Ocean general circulation model (OGCM) experiments show that sea surface warming is the dominant forcing for the subtropical gyre change in contrast to natural variability for which wind dominates, and the ocean response is insensitive to the spatial pattern of surface warming. An analysis based on a ventilated thermocline model shows that the pattern of the lower thermocline change can be interpreted in terms of the dynamic response to the strengthened stratification and downward heat mixing. Consequently, the subtropical gyres become intensified at the surface but weakened in the lower thermcline, consistent with results from CMIP experiments.
    Description: The work was supported by the National Basic Research Program of China (2012CB955600), the National Natural Science Foundation of China (41125019, 41206021), and the U.S. National Science Foundation (AGS 1249145, 1305719).
    Description: 2016-05-01
    Keywords: Circulation/ Dynamics ; Ocean circulation ; Physical Meteorology and Climatology ; Climate change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 25 (2012): 3549–3565, doi:10.1175/JCLI-D-11-00320.1.
    Description: The recently released NCEP Climate Forecast System Reanalysis (CFSR) is used to examine the response to ENSO in the northeast tropical Pacific Ocean (NETP) during 1979–2009. The normally cool Pacific sea surface temperatures (SSTs) associated with wind jets through the gaps in the Central American mountains at Tehuantepec, Papagayo, and Panama are substantially warmer (colder) than the surrounding ocean during El Niño (La Niña) events. Ocean dynamics generate the ENSO-related SST anomalies in the gap wind regions as the surface fluxes damp the SSTs anomalies, while the Ekman heat transport is generally in quadrature with the anomalies. The ENSO-driven warming is associated with large-scale deepening of the thermocline; with the cold thermocline water at greater depths during El Niño in the NETP, it is less likely to be vertically mixed to the surface, particularly in the gap wind regions where the thermocline is normally very close to the surface. The thermocline deepening is enhanced to the south of the Costa Rica Dome in the Papagayo region, which contributes to the local ENSO-driven SST anomalies. The NETP thermocline changes are due to coastal Kelvin waves that initiate westward-propagating Rossby waves, and possibly ocean eddies, rather than by local Ekman pumping. These findings were confirmed with regional ocean model experiments: only integrations that included interannually varying ocean boundary conditions were able to simulate the thermocline deepening and localized warming in the NETP during El Niño events; the simulation with variable surface fluxes, but boundary conditions that repeated the seasonal cycle, did not.
    Description: This research was supported by grants from the NOAA office of Global Programs and the NSF Climate and Global Dynamics Division.
    Description: 2012-11-15
    Keywords: North Pacific Ocean ; Atmosphere-ocean interaction ; ENSO ; Thermocline circulation ; Waves, oceanic ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 22 (2007): PA4214, doi:10.1029/2007PA001468.
    Description: The tropical Pacific plays a central role in the climate system by providing large diabatic heating that drives the global atmospheric circulation. Quantifying the role of the tropics in late Pleistocene climate change has been hampered by the paucity of paleoclimate records from this region and the lack of realistic transient climate model simulations covering this period. Here we present records of hydrogen isotope ratios (δD) of alkenones from the Panama Basin off the Colombian coast that document hydrologic changes in equatorial South America and the eastern tropical Pacific over the past 27,000 years (a) and the past 3 centuries in detail. Comparison of alkenone δD values with instrumental records of precipitation over the past ∼100 a suggests that δD can be used as a hydrologic proxy. On long timescales our records indicate reduced rainfall during the last glacial period that can be explained by a southward shift of the mean position of the Intertropical Convergence Zone and an associated reduction of Pacific moisture transport into Colombia. Precipitation increases at ∼17 ka in concert with sea surface temperature (SST) cooling in the North Atlantic and the eastern tropical Pacific. A regional coupled model, forced by negative SST anomalies in the Caribbean, simulates an intensification of northeasterly trade winds across Central America, increased evaporative cooling, and a band of increased rainfall in the northeastern tropical Pacific. These results are consistent with the alkenone SST and δD reconstructions that suggest increasing precipitation and SST cooling at the time of Heinrich event 1.
    Description: K. P. and J. P. S. thank the Comer Science and Education Foundation for financial support. J. P. S. acknowledges support by the National Science Foundation (grant NSF-ESH-0639640). NSF grant OCE-0317702 funded cruise KNR176 to the Panama Basin and L. D. K.’s results presented here. A. T. is supported by the Japan Agency for Marine-Earth Science and Technology. S. P. X. is supported by the National Oceanic and Atmospheric Administration CLIVAR Program, the Japan Ministry of Education, Culture, Science and Technology through the Kyosei-7 Project, and the Japan Agency for Marine-Earth Science and Technology.
    Keywords: Past hydrologic changes ; Eastern tropical Pacific ; Compound-specific hydrogen isotope ratios
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 26 (2013): 9247–9290, doi:10.1175/JCLI-D-12-00593.1.
    Description: This is the second part of a three-part paper on North American climate in phase 5 of the Coupled Model Intercomparison Project (CMIP5) that evaluates the twentieth-century simulations of intraseasonal to multidecadal variability and teleconnections with North American climate. Overall, the multimodel ensemble does reasonably well at reproducing observed variability in several aspects, but it does less well at capturing observed teleconnections, with implications for future projections examined in part three of this paper. In terms of intraseasonal variability, almost half of the models examined can reproduce observed variability in the eastern Pacific and most models capture the midsummer drought over Central America. The multimodel mean replicates the density of traveling tropical synoptic-scale disturbances but with large spread among the models. On the other hand, the coarse resolution of the models means that tropical cyclone frequencies are underpredicted in the Atlantic and eastern North Pacific. The frequency and mean amplitude of ENSO are generally well reproduced, although teleconnections with North American climate are widely varying among models and only a few models can reproduce the east and central Pacific types of ENSO and connections with U.S. winter temperatures. The models capture the spatial pattern of Pacific decadal oscillation (PDO) variability and its influence on continental temperature and West Coast precipitation but less well for the wintertime precipitation. The spatial representation of the Atlantic multidecadal oscillation (AMO) is reasonable, but the magnitude of SST anomalies and teleconnections are poorly reproduced. Multidecadal trends such as the warming hole over the central–southeastern United States and precipitation increases are not replicated by the models, suggesting that observed changes are linked to natural variability.
    Description: The authors acknowledge the support of NOAA/Climate Program Office/Modeling, Analysis, Predictions and Projections (MAPP) program as part of the CMIP5 Task Force.
    Description: 2014-06-01
    Keywords: North America ; Regional effects ; Coupled models ; Decadal variability ; Interannual variability ; Intraseasonal variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 38 (2011): L05601, doi:10.1029/2010GL046626.
    Description: The analysis of an updated monthly climatology of observed temperature and salinity from the U.S. Navy Generalized Digital Environment Model reveals a basin-scale cyclonic circulation over the deep South China Sea (SCS). The cyclonic circulation lies from about 2400 m to the bottom. The boundary current transport of the cyclonic circulation is around 3.0 Sv. Our results suggest that the cyclonic circulation is mainly forced by the Luzon overflow, with bottom topography playing an important role. The structures of potential temperature, salinity, and potential density in the deep SCS are consistent with the existence of the cyclonic circulation. Specifically, low salinity water is found in the interior region west of Luzon Island, and surrounded by saline Pacific water in boundary current regions to the north, west and southwest. Our results show the potential density distribution and the corresponding cyclonic circulation in deep SCS are primarily controlled by salinity variations in the deep basin.
    Description: G. Wang was supported by the National Basic Research Program (2007CB816003) and the National Natural Science Foundation of China (40976017, 40730843); S.‐P. Xie by the US National Foundation (NSF), the Changjiang Scholar and Qianren Programs; T. Qu by NSF (OCE10‐29704).
    Keywords: Deep South China Sea circulation ; Boundary current
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C03026, doi:10.1029/2010JC006670.
    Description: A regional coupled model is used for a dynamic downscaling over the tropical Atlantic based on a global warming simulation carried out with the Geophysical Fluid Dynamics Laboratory CM2.1. The regional coupled model features a realistic representation of equatorial ocean dynamical processes such as the tropical instability waves (TIWs) that are not adequately simulated in many global coupled climate models. The coupled downscaling hence provides a unique opportunity to assess their response and impact in a changing climate. Under global warming, both global and regional models exhibit an increased (decreased) rainfall in the tropical northeast (South) Atlantic. Given this asymmetric change in mean state, the regional model produces the intensified near-surface cross-equatorial southerly wind and zonal currents. The equatorial cold tongue exhibits a reduced surface warming due to the enhanced upwelling. It is mainly associated with the increased vertical velocities driven by cross-equatorial wind, in contrast to the equatorial Pacific, where thermal stratification is suggested to be more important under global warming. The strengthened upwelling and zonal currents in turn amplify the dynamic instability of the equatorial ocean, thereby intensifying TIWs. The increased eddy heat flux significantly warms the equator and counters the effect of enhanced upwelling. Zonal eddy heat flux makes the largest contribution, suggesting a need for sustained monitoring of TIWs with spatially denser observational arrays in the equatorial oceans. Overall, results suggest that eddy heat flux is an important factor that may impact the mean state warming of equatorial oceans, as it does in the current climate.
    Description: H.S. acknowledges the support from the NOAA Climate and Global Change Postdoctoral Fellowship Program and the Penzance Endowed Fund in Support of Assistant Scientists at WHOI. H.S. and S.‐P.X. are thankful for support from NOAA, NSF, and the Japan Agency for Marine‐Earth Science and Technology.
    Keywords: Climate change ; Ocean mesoscale eddy ; Equatorial Atlantic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...