GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Institut für Meereskunde Hamburg
    In:  Meteor-Berichte, 03-1: "Ostatlantik-Mittelmeer-Schwarzes Meer" Part 1 . Institut für Meereskunde Hamburg, Hamburg, Germany, 38 pp.
    Publication Date: 2012-07-06
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-14
    Description: The Archean metasedimentary succession of the Witwatersrand basin, South Africa, hosts the largest Au deposit in the world. Gold mineralization is mostly concentrated in conglomerate horizons, or "reefs," and is tightly associated with pyrite. Trace element zoning of pyrite from the Ventersdorp Contact Reef, studied by X-ray elemental (As, Ni, Co, and Pb) maps, electron microprobe analysis, and laser ablation-inductively coupled plasma-mass spectrometry, indicates successive stages of pyrite formation, each characterized by different textures and trace element composition (As ≤2.2 wt %, Ni ≤1.37 wt %, Co ≤1.98 wt %). Four generations have been distinguished: generation 1 is detrital and includes compact (nonporous), porous, and laminated pyrite; generations 2 to 4 are postsedimentary/authigenic. Generation 4 pyrite formed at near-peak metamorphic conditions (T = 270°–350°C, chlorite geothermometry). Porous and concentrically laminated pyrite grains (generation 1) are particularly enriched in Au (average 6.4 ppm, maximum 70 ppm), in addition to Sb, Tl, Pb, Mn, Mo, Cu, and Ag, in comparison with compact pyrite types of all generations. In these grains, Au, occurring as "invisible gold," and other trace elements might be finely dispersed with the phyllosilicates filling the pyrite pores. Trace element composition of porous and concentrically laminated pyrite is reminiscent of pyrite known to form in suboxic to anoxic environments (black shales). The presence of Au in detrital pyrite indicates an early introduction of Au in the Ventersdorp Contact Reef. Gold is also present as secondary inclusions of electrum associated with the last pyrite generation (generation 4), together with sphalerite, chalcopyrite, galena, and pyrrhotite.
    Print ISSN: 0361-0128
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-03-02
    Description: Apatite geochronology is a versatile method for providing medium temperature history constraints of magmatic and metamorphic rocks. The LA-ICP-MS technique is widely applied to U/Pb geochronology using various minerals. Apatite U/Pb geochronology, in contrast to e.g., zircon, is compromised by variable amounts of common Pb incorporated into the crystal during growth. Magmatic apatite often shows a sufficient spread in data to obtain a precise and accurate lower intercept age. If this is not the case, the initial Pb isotopic composition needs to be estimated to obtain accurate and precise age information from apatite. Two approaches are common, one being the estimation of common Pb from a Pb evolution model and the other being the measurement of a coexisting mineral phase that tends to incorporate Pb but not U, e.g., feldspar. Most recent studies applying LA-ICP-MS to the analysis of Pb isotopes in feldspar utilize either multicollector or magnetic sector mass spectrometers. In this study we first evaluate the application of quadrupole mass spectrometry for apatite U/Pb geochronology combined with Pb isotopic measurements in feldspar and compare the results with modeled initial Pb isotopic compositions. The resulting age information is accurate and precise despite using plagioclase rather than K-feldspar, as is normally used, to define initial Pb isotope compositions. We apply this method to apatite-bearing gabbroic rocks from layered intrusions (Bushveld, Bjerkreim-Sokndal, Hasvik, and Skaergaard) ranging in age from ca. 2 Ga to ca. 55 Ma and generate metamorphic/cooling ages generally consistent with the known geologic history of these intrusions.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-12-30
    Description: The Taimyr fold-and-thrust belt records late Paleozoic compression, presumably related to Uralian orogenesis, overprinted by Mesozoic dextral strike-slip faulting. U-Pb detrital zircon analyses of 38 sandstones from southern Taimyr were conducted using laser ablation–inductively coupled plasma–mass spectrometry to investigate late Paleozoic to Mesozoic sediment provenance and the tectonic evolution of Taimyr within a regional framework. The Pennsylvanian to Permian sandstones contain detrital zircon populations of 370–260 Ma, which are consistent with derivation from the late Paleozoic Uralian orogen in northern Taimyr and/or the polar Urals. Late Neoproterozoic through Silurian ages (688–420 Ma), most consistent with derivation from Timanian and Caledonian age sources, suggest an ultimate Baltica source. Southern Taimyr represents the proforeland basin of the bivergent Uralian orogen in the late Paleozoic. Triassic sedimentary rocks contain detrital zircon populations of Carboniferous–Permian (355–260 Ma), late Neoproterozoic to Early Devonian (650–410 Ma), and minor Neoproterozoic (1000–700 Ma) ages, which suggest a similar provenance as the Carboniferous to Permian strata. The addition of a Permian–Triassic (260–220 Ma) zircon population indicates derivation of detritus from Siberian Trap–related magmatism. Jurassic samples have a dominant age peak at 255 Ma and a distinct reduction in Carboniferous–Permian and late Neoproterozoic to Early Devonian input, suggesting that erosion and contributions from Uralian sources ceased while greater input from Siberian Trap–related rocks of Taimyr dominated. Comparison of these results to the published literature demonstrates that detritus from the Uralian orogen was deposited in Taimyr, Novaya Zemlya, and the New Siberian Islands in the Permian, but not in the Lisburne Hills or Wrangel Island. In the Triassic, Taimyr, Chukotka, Wrangel Island, the Kular Dome in the northern Verkhoyansk of Siberia, Lisburne Hills, Franz Josef Land, and Svalbard shared sources from Taimyr, the Siberian Traps, and the polar Urals, indicating that there were no geographic barriers among these locations prior to opening of the Amerasia Basin. Detritus from the Uralian orogen in Taimyr was shed northward into the retroforeland basin and was then transported farther 20–30 m.y. after Uralian orogenesis. The widespread distribution of material eroded from Taimyr and the polar Urals during the Triassic is likely due to the arrival of, and sublithospheric spreading associated with, the Siberian mantle plume head at ca. 250 Ma. The subsequent motion of the lithosphere relative to the plume-swell likely caused a northwestward migration of the uplifted regions. Taimyr and the polar Urals were probably affected. In the Jurassic, detrital zircon spectra from Taimyr, Chukotka, the Kular Dome, and Svalbard show great differences, suggesting that these locations no longer shared the same provenance from Taimyr and the Urals. The restricted distribution of detritus from Taimyr and the Urals indicates that erosion of the Uralian orogen was reduced. In the Late Jurassic, the depositional setting of southern Taimyr probably changed from a foreland to an intracratonic basin.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-12
    Description: Apatite geochronology is a versatile method for providing medium temperature history constraints of magmatic and metamorphic rocks. The LA-ICP-MS technique is widely applied to U/Pb geochronology using a variety of minerals. Apatite U/Pb geochronology, in contrast to e.g. zircon, is compromised by variable amounts of common Pb incorporated into the crystal during growth. Magmatic apatite often shows a sufficient spread in data to obtain a precise and accurate lower intercept age. If this is not the case, the initial Pb isotopic composition needs to be estimated to obtain accurate and precise age information from apatite. Two approaches are common, one being the estimation of common Pb from a Pb evolution model and the other being the measurement of a coexisting mineral phase that tends to incorporate Pb but not U, e.g. feldspar. Most recent studies applying LA-ICP-MS to the analysis of Pb isotopes in feldspar utilize either multicollector or magnetic sector mass spectrometers. In this study we firstly evaluate the application of quadrupole mass spectrometry for apatite U/Pb geochronology combined with Pb isotopic measurements in feldspar and compare the results with modelled initial Pb isotopic compositions. The resulting age information is accurate and precise despite using plagioclase rather than K-feldspar, as is normally used, to define initial Pb isotope compositions. We apply this method to apatite-bearing gabbroic rocks from layered intrusions (Bushveld, Bjerkreim-Sokndal, Hasvik, and Skaergaard) ranging in age from ca. 2 Ga to ca. 55 Ma and generate metamorphic/cooling ages generally consistent with the known geologic history of these intrusions.
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-04-14
    Description: The Tulaergen magmatic Ni–Cu deposit is related to mafic‐ultramafic rocks of the Central Asian Orogenic Belt. The ore‐host rocks are lherzolite and websterite and the major ore types are net‐textured and sparsely disseminated ores. The disseminated ores host high‐Fo (82–85) olivine and hornblende with low‐Al contents, high‐rare earth element (REE) abundances and negative Eu anomalies. The net‐textured mineralized lherzolite contains low‐Fo (74–82) olivine and high‐Al hornblende, the latter characterized by low REE concentrations and no Eu anomaly. The contrasting composition of olivine and hornblende suggests two stages of magmatism. In situ analysis of pentlandite, chalcopyrite and pyrrhotite shows that platinum‐group elements contents in sulphides are low. Contrasting Ni, Co, Se, Ag, Cd, and Pb contents in sulphides from net‐textured and in disseminated ores also supports two pulses of magmas, each with a distinct chemical composition. High‐Mg basaltic magma characterized the first stage, followed by a second‐stage less basic magma with a high H2O content. Whole‐rock Sr and Nd isotopic signatures suggest that about 4–6% crustal materials were added to the depleted mantle source. The fractional crystallization of olivine and crustal contamination play important roles in sulphur segregation at Tulaergen based on sulphur content at sulphide saturation modelling. Injection of magma enriched in H2O further enhanced sulphide aggregation and deposit forming. It is proposed that two pulses of magma injections occurred at the Tulaergen deposit, with the products of the first pulse settling at the base, and of the second one with dense mineralization laying at the top of the deposit.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...