GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Toyofuku, Takashi; Kitazato, Hiroshi; Kawahata, Hodaka; Tsuchiya, Masashi; Nohara, Masato (2000): Evaluation of Mg/Ca thermometry in foraminifera: Comparison of experimental results and measurements in nature. Paleoceanography, 15(4), 456-464, https://doi.org/10.1029/1999PA000460
    Publication Date: 2023-05-12
    Description: We studied Mg/Ca in high-Mg, shallow-water benthic foraminifera in culture and in samples from natural environments, in order to evaluate the expression of latitudinal and seasonal temperature variability in Mg/Ca in their tests. We cultured Planoglabratella opercularis (d'Orbigny) and Quinqueloculina yabei Asano under controlled temperature (10°-25°C) and salinity (30-38) conditions. Both species show a linear correlation between Mg/Ca and temperature, but they differ in temperature sensitivity. Salinity does not significantly influence Mg/Ca. In the samples collected in nature, Mg/Ca and seawater temperatures are positively correlated, but there are more complexities than in the records for cultured specimens due to such factors as seasonal fluctuations in temperature. We conclude that Mg/Ca ratios in monospecific benthic foraminiferal samples may be used as a reliable temperature proxy, if the lifetime of the species is taken into account.
    Keywords: average; Calculated from Mg/Ca ratios; DATE/TIME; DEPTH, sediment/rock; Echizen-Matsushima; Event label; Habitat; HAND; Kushikino; Latitude of event; Longitude of event; Magnesium/Calcium ratio; off Japan; Omaezaki; Rumoi; Sampling by hand; Taisha; Temperature, calculated; Temperature, water; Tsuruka
    Type: Dataset
    Format: text/tab-separated-values, 70 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-15
    Description: Large Benthic Foraminifera are a crucial component of coral-reef ecosystems, which are currently threatened by ocean acidification. We conducted culture experiments to evaluate the impact of low pH on survival and test dissolution of the symbiont-bearing species Peneroplis spp., and to observe potential calcification recovery when specimens are placed back under reference pH value (7.9). We found that Peneroplis spp. displayed living activity up to 3 days at pH 6.9 (Omega cal 〈 1) or up to 1 month at pH 7.4 (Omega cal 〉 1), despite the dark and unfed conditions. Dissolution features were observed under low Omega cal values, such as changes in test density, peeled extrados layers, and decalcified tests with exposed organic linings. A new calcification phase started when specimens were placed back at reference pH. This calcification's resumption was an addition of new chambers without reparation of the dissolved parts, which is consistent with the porcelaneous calcification pathway of Peneroplis spp. The most decalcified specimens displayed a strong survival response by adding up to 8 new chambers, and the contribution of food supply in this process was highlighted. These results suggest that porcelaneous LBF species have some recovery abilities to short exposure (e.g., 3 days to 1 month) to acidified conditions. However, the geochemical signature of trace elements in the new calcite was impacted, and the majority of the new chambers were distorted and resulted in abnormal tests, which might hinder the specimens' reproduction and thus their survival on the long term.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Biomass/Abundance/Elemental composition; Boron/Calcium ratio; Boron/Calcium ratio, standard deviation; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcite saturation state; Calcite saturation state, standard deviation; Calcium; Calculated using CO2calc; Calculated using seacarb after Nisumaa et al. (2010); Calculated using seacarb after Orr et al. (2018); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Chromista; Coast and continental shelf; Density; EXP; Experiment; Experiment day; Foraminifera; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Fugacity of carbon dioxide in seawater, standard deviation; Heterotrophic prokaryotes; Identification; Ikeijima_Island; Laboratory experiment; Magnesium/Calcium ratio; Magnesium/Calcium ratio, standard deviation; Manganese/Calcium ratio; Manganese/Calcium ratio, standard deviation; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Peneroplis sp.; pH; pH, standard deviation; Potentiometric; Potentiometric titration; Replicate; Salinity; Salinity, standard deviation; Single species; Species; Strontium/Calcium ratio; Strontium/Calcium ratio, standard deviation; Temperate; Temperature, water; Treatment; Treatment: pH; Type; Zinc/Calcium ratio; Zinc/Calcium ratio, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 618 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-12-07
    Description: We studied the specific hierarchical architecture of aragonitic shells of a hyaline radial foraminifer, Hoeglundina elegans. The porous shells consist of an ∼50 nm thin top layer and columnar domains ∼1 μm wide and ∼5 μm long in which the c-axis is perpendicular to the surface. The domains are regarded as bundled pillars comprising iso-oriented nanograins ∼5 nm in diameter, and divided by lateral lines of nanoscale voids with an interval of ∼240–500 nm.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 7 (2016): 163, doi:10.3389/fmicb.2016.00163.
    Description: Some benthic foraminiferal species are reportedly capable of nitrate storage and denitrification, however, little is known about nitrate incorporation and subsequent utilization of nitrate within their cell. In this study, we investigated where and how much 15N or 34S were assimilated into foraminiferal cells or possible endobionts after incubation with isotopically labeled nitrate and sulfate in dysoxic or anoxic conditions. After 2 weeks of incubation, foraminiferal specimens were fixed and prepared for Transmission Electron Microscopy (TEM) and correlative nanometer-scale secondary ion mass spectrometry (NanoSIMS) analyses. TEM observations revealed that there were characteristic ultrastructural features typically near the cell periphery in the youngest two or three chambers of the foraminifera exposed to anoxic conditions. These structures, which are electron dense and ~200–500 nm in diameter and co-occurred with possible endobionts, were labeled with 15N originated from 15N-labeled nitrate under anoxia and were labeled with both 15N and 34S under dysoxia. The labeling with 15N was more apparent in specimens from the dysoxic incubation, suggesting higher foraminiferal activity or increased availability of the label during exposure to oxygen depletion than to anoxia. Our results suggest that the electron dense bodies in Ammonia sp. play a significant role in nitrate incorporation and/or subsequent nitrogen assimilation during exposure to dysoxic to anoxic conditions.
    Description: This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan (Young Scientists B No. 22740340 and Scientific Research C No. 24540504 to HN), an Invitation Fellowship for Research in Japan to JB by Japan Society for the Promotion of Science (JSPS), the Robert W. Morse Chair for Excellence in Oceanography at WHOI to JB, and The Investment in Science Fund at WHOI to JB.
    Keywords: Foraminifer ; Nitrate ; NanoSIMS ; Electron dense body ; Endobionts ; Ultrastructure ; Denitrification
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Biogeosciences 124 (2019): 2823-2850, doi:10.1029/2019JG005113.
    Description: Microscopy techniques have been widely applied to observe cellular ultrastructure. Most of these techniques, such as transmission electron microscopy, produce high‐resolution images, but they may require extensive preparation, hampering their application for in vivo examination. Other approaches, such as fluorescent and fluorogenic probes, can be applied not only to fixed specimens but also to living cells when the probes are nontoxic. Fluorescence‐based methods, which are generally relatively easy to use, allow visual and (semi)quantitative studies of the ultrastructural organization and processes of the cell under natural as well as manipulated conditions. To date, there are relatively few published studies on the nearly ubiquitous marine protistan group Foraminifera that have used fluorescent and fluorogenic probes, despite their huge potential. The aim of the present contribution is to document the feasible application of a wide array of these probes to foraminiferal biology. More specifically, we applied fluorescence‐based probes to study esterase activity, cell viability, calcium signaling, pH variation, reactive oxygen species, neutral and polar lipids, lipid droplets, cytoskeleton structures, Golgi complex, acidic vesicles, nuclei, and mitochondria in selected foraminiferal species.
    Description: The authors are very grateful to the Editor‐in‐Chief Miguel Goni and two anonymous reviewers for their thoughtful and valuable comments that have greatly improved the paper. Markus Raitzsch and Karina Kaczmarek from the AWI, Jakub Kordas from the ZOO Wrocław sp. z o. o. (Poland), and Max Janse from The Royal Burgers' Zoo (Arnhem, the Netherlands) are gratefully acknowledged. The authors declare that no competing interests exist. All the data are included within the paper or the supporting information accompanying it. The research for this paper was partially supported by the Ministero dell'Istruzione, dell'Università e della Ricerca (PRIN 2010‐2011 protocollo 2010RMTLYR) to R.C., the Japan Society for the Promotion of Science KAKENHI Grant (Numbers: JP18H06074, JP17H02978, JP19H02009, JP19H03045) to T.T. and Y.N., the WHOI Investment in Science Program to J.M.B, the Polish National Science Center (Grant DEC‐2015/19/B/ST10/01944) J.T. and J.G. and the Kuwait Foundation for the Advancement of Sciences (EM084C) to E.A‐E.
    Description: 2020-02-22
    Keywords: Protist ; Organelles ; Confocal laser scanning microscopy ; Probes ; Foraminifera
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...