GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Tames-Espinosa, Mayte; Martinez, I; Romero-Kutzner, Vanesa; Coca, Josep; Algueró-Muñiz, Maria; Horn, Henriette G; Ludwig, Andrea; Taucher, Jan; Bach, Lennart Thomas; Riebesell, Ulf; Packard, Ted T; Gómez, May (2020): Metabolic Responses of Subtropical Microplankton After a Simulated Deep-Water Upwelling Event Suggest a Possible Dominance of Mixotrophy Under Increasing CO2 Levels. Frontiers in Marine Science, 7, https://doi.org/10.3389/fmars.2020.00307
    Publication Date: 2024-03-06
    Description: Potential respiration and proteinaceous biomass in the microplankton community (0.7-50um) and sediment traps
    Keywords: BIOACID; Biological Impacts of Ocean Acidification; electron transport system (ETS); Potential respiration; protein
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-06
    Description: Potential respiration and proteinaceous biomass in the microplankton community (0.7-50um)
    Keywords: BIOACID; Biological Impacts of Ocean Acidification; DATE/TIME; Day of experiment; electron transport system (ETS); Event label; KOSMOS_2014; KOSMOS_2014_Atlantic-Reference; KOSMOS_2014_Mesocosm-M1; KOSMOS_2014_Mesocosm-M2; KOSMOS_2014_Mesocosm-M3; KOSMOS_2014_Mesocosm-M4; KOSMOS_2014_Mesocosm-M5; KOSMOS_2014_Mesocosm-M7; KOSMOS_2014_Mesocosm-M8; KOSMOS_2014_Mesocosm-M9; MESO; Mesocosm experiment; Mesocosm label; Potential respiration; protein; Proteins, particulate; Respiration rate, oxygen, potential; Subtropical North Atlantic
    Type: Dataset
    Format: text/tab-separated-values, 640 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-06
    Description: Potential respiration and proteinaceous biomass in sediment traps
    Keywords: BIOACID; Biological Impacts of Ocean Acidification; DATE/TIME; Day of experiment; electron transport system (ETS); Event label; KOSMOS_2014; KOSMOS_2014_Mesocosm-M1; KOSMOS_2014_Mesocosm-M2; KOSMOS_2014_Mesocosm-M3; KOSMOS_2014_Mesocosm-M4; KOSMOS_2014_Mesocosm-M5; KOSMOS_2014_Mesocosm-M7; KOSMOS_2014_Mesocosm-M8; KOSMOS_2014_Mesocosm-M9; MESO; Mesocosm experiment; Mesocosm label; Potential respiration; protein; Proteins, particulate; Respiration rate, oxygen, potential; Subtropical North Atlantic
    Type: Dataset
    Format: text/tab-separated-values, 252 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-15
    Description: In the autumn of 2014, nine large mesocosms were deployed in the oligotrophic subtropical North-Atlantic coastal waters off Gran Canaria (Spain). Their deployment was designed to address the acidification effects of CO2 levels from 400 to 1,400 μatm, on a plankton community experiencing upwelling of nutrient-rich deep water. Among other parameters, chlorophyll a (chl-a), potential respiration (PHi), and biomass in terms of particulate protein (B) were measured in the microplankton community (0.7–50.0 μm) during an oligotrophic phase (Phase I), a phytoplankton-bloom phase (Phase II), and a post-bloom phase (Phase III). Here, we explore the use of the PHi/chl-a ratio in monitoring shifts in the microplankton community composition and its metabolism. PHi/chl-a values below 2.5 μL O2/h/ (μg chl-a) indicated a community dominated by photoautotrophs. When PHi/chl-a ranged higher, between 2.5 and 7.0 μL O2/h/ (μg chl-a), it indicated a mixed community of phytoplankton, microzooplankton and heterotrophic prokaryotes. When PHi/chl-a rose above 7.0 μL O2/h/ (μg chl-a), it indicated a community where microzooplankton proliferated (〉10.0 μL O2/h/ (μg chl-a)), because heterotrophic dinoflagellates bloomed. The first derivative of B, as a function of time (dB/dt), indicates the rate of protein build-up when positive and the rate of protein loss, when negative. It revealed that the maximum increase in particulate protein (biomass) occurred between 1 and 2 days before the chl-a peak. A day after this peak, the trough revealed the maximum net biomass loss. This analysis did not detect significant changes in particulate protein, neither in Phase I nor in Phase III. Integral analysis of PHi, chl-a and B, over the duration of each phase, for each mesocosm, reflected a positive relationship between PHi and pCO2 during Phase II [alpha = 230*10−5 μL O2/h/L/(μatm CO2)/(phase-day), R2 = 0.30] and between chl-a and pCO2 during Phase III [alpha= 100*10−5 μg chl-a/L/ (μ atmCO2)/ (phase-day), R2 = 0.84]. At the end of Phase II, a harmful algal species (HAS), Vicicitus globosus, bloomed in the high pCO2 mesocosms. In these mesocosms, microzooplankton did not proliferate, and chl-a retention time in the water column increased. In these V. globosus-disrupted communities, the PHi/chl-a ratio [4.1 +- 1.5 μL O2/h/(μg chl-a)] was more similar to the PHi/chl-a ratio in a mixed plankton community than to a photoautotroph-dominated one.
    Keywords: Alkalinity, total; Amoeba; Amphidinium; Aragonite saturation state; Bicarbonate ion; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chlorophyll a; Ciliates; Coast and continental shelf; Community composition and diversity; DATE/TIME; Day of experiment; Dinophyceae; Diplopsalis group indeterminata; Entire community; Event label; Field experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gymnodinium; Katodinium glaucum; KOSMOS_2014; KOSMOS_2014_Atlantic-Reference; KOSMOS_2014_Mesocosm-M1; KOSMOS_2014_Mesocosm-M2; KOSMOS_2014_Mesocosm-M3; KOSMOS_2014_Mesocosm-M4; KOSMOS_2014_Mesocosm-M5; KOSMOS_2014_Mesocosm-M6; KOSMOS_2014_Mesocosm-M7; KOSMOS_2014_Mesocosm-M8; KOSMOS_2014_Mesocosm-M9; Macro-nutrients; MESO; Mesocosm experiment; Mesocosm label; Mesocosm or benthocosm; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Oxytoxum; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Pronoctiluca sp.; Proteins, particulate; Protoperidinium sp.; Respiration; Respiration rate, oxygen, potential; Salinity; Scuticociliates, fractionated; Subtropical North Atlantic; Temperate; Temperature, water; Tintinnida indeterminata; Torodinium sp.; Type
    Type: Dataset
    Format: text/tab-separated-values, 6763 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-08
    Description: In the autumn of 2014, nine large mesocosms were deployed in the oligotrophic subtropical North-Atlantic coastal waters off Gran Canaria (Spain). Their deployment was designed to address the acidification effects of CO2 levels from 400 to 1,400 mu atm, on a plankton community experiencing upwelling of nutrient-rich deep water. Among other parameters, chlorophyll a (chl-a), potential respiration (Phi), and biomass in terms of particulate protein (B) were measured in the microplankton community (0.7-50.0 mu m) during an oligotrophic phase (Phase I), a phytoplankton-bloom phase (Phase II), and a post-bloom phase (Phase III). Here, we explore the use of the Phi/chl-a ratio in monitoring shifts in the microplankton community composition and its metabolism. Phi/chl-a values below 2.5 mu L O-2 h(-1) (mu g chl-a)(-1) indicated a community dominated by photoautotrophs. When Phi/chl-a ranged higher, between 2.5 and 7.0 mu L O-2 h(-1) (pg chl-a)(-1) , it indicated a mixed community of phytoplankton, microzooplankton and heterotrophic prokaryotes. When Phi/chl-a rose above 7.0 mu L O-2 h(-1) (mu g chl-a)(-1), it indicated a community where microzooplankton proliferated (〉10.0 mu L O-2 h(-1) (mu g chl-a)(-1)), because heterotrophic dinoflagellates bloomed. The first derivative of B, as a function of time (dB/dt), indicates the rate of protein build-up when positive and the rate of protein loss, when negative. It revealed that the maximum increase in particulate protein (biomass) occurred between 1 and 2 days before the chl-a peak. A day after this peak, the trough revealed the maximum net biomass loss. This analysis did not detect significant changes in particulate protein, neither in Phase I nor in Phase III. Integral analysis of Phi/chl-a and B, over the duration of each phase, for each mesocosm, reflected a positive relationship between 4) and pCO(2) during Phase II [alpha = 230.10-5 mu L O-2 h(-1) L-1 (patm CO2)(-1) (phase-day)(-1), R-2 = 0.30] and between chl-a and pCO(2) during Phase III [alpha = 100.10(-5) Ag chl-a L-1 (mu atmCO(2))(-1) (phase-day)(-1), R-2 = 0.84]. At the end of Phase II, a harmful algal species (HAS), Vicicitus globosus, bloomed in the high pCO(2) mesocosms. In these mesocosms, microzooplankton did not proliferate, and chl-a retention time in the water column increased. In these V globosus-disrupted communities, the (Phi/chl-a ratio [4.1 +/- 1.5 /mu L O-2 h(-1) (mu g chl-a)(-1)] was more similar to the Phi/chl-a ratio in a mixed plankton community than to a photoautotroph-dominated one.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-07-22
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...