GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Oellermann, Michael; Strugnell, Jan M; Lieb, Bernhard; Mark, Felix Christopher (2015): Positive selection in octopus haemocyanin indicates functional links to temperature adaptation. BMC Evolutionary Biology, 15, 133-150, https://doi.org/10.1186/s12862-015-0411-4
    Publication Date: 2023-11-11
    Description: Background: Octopods have successfully colonised the world's oceans from the tropics to the poles. Yet, successful persistence in these habitats has required adaptations of their advanced physiological apparatus to compensate impaired oxygen supply. Their oxygen transporter haemocyanin plays a major role in cold tolerance and accordingly has undergone functional modifications to sustain oxygen release at sub-zero temperatures. However, it remains unknown how molecular properties evolved to explain the observed functional adaptations. We thus aimed to assess whether natural selection affected molecular and structural properties of haemocyanin that explains temperature adaptation in octopods. Results: Analysis of 239 partial sequences of the haemocyanin functional units (FU) f and g of 28 octopod species of polar, temperate, subtropical and tropical origin revealed natural selection was acting primarily on charge properties of surface residues. Polar octopods contained haemocyanins with higher net surface charge due to decreased glutamic acid content and higher numbers of basic amino acids. Within the analysed partial sequences, positive selection was present at site 2545, positioned between the active copper binding centre and the FU g surface. At this site, methionine was the dominant amino acid in polar octopods and leucine was dominant in tropical octopods. Sites directly involved in oxygen binding or quaternary interactions were highly conserved within the analysed sequence. Conclusions: This study has provided the first insight into molecular and structural mechanisms that have enabled octopods to sustain oxygen supply from polar to tropical conditions. Our findings imply modulation of oxygen binding via charge-charge interaction at the protein surface, which stabilize quaternary interactions among functional units to reduce detrimental effects of high pH on venous oxygen release. Of the observed partial haemocyanin sequence, residue 2545 formed a close link between the FU g surface and the active centre, suggesting a role as allosteric binding site. The prevalence of methionine at this site in polar octopods, implies regulation of oxygen affinity via increased sensitivity to allosteric metal binding. High sequence conservation of sites directly involved in oxygen binding indicates that functional modifications of octopod haemocyanin rather occur via more subtle mechanisms, as observed in this study.
    Keywords: Comment; Cruise/expedition; Depth, bathymetric; Gear; Identification; LATITUDE; Length; Location; LONGITUDE; Reference/source; Salinity; Salinity, maximum; Salinity, minimum; Sample mass; Sampling date; Sex; Species; Station label; Temperature, water; Temperature, water, maximum; Temperature, water, minimum
    Type: Dataset
    Format: text/tab-separated-values, 603 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-23
    Description: Three hundred and fifty specimens of the endemic Southern Ocean octopus genus Pareledone, were sequenced for the barcoding gene COI. Geographic coverage comprised the South Shetland Islands, the Ross Sea, Adélie Land, George V Land, the Weddell Sea, under the site of the former Larsen B ice shelf, Prydz Bay, the South Orkney Islands and the Amundsen Sea. The greatest number of specimens was captured at the three first-mentioned localities. At least 11 species were represented in the samples and the analyses revealed cryptic species. Six species were found to have extended distributions. Circumpolarity is supported for at least one species. Evidence is presented for a barrier to gene flow to the west of the Antarctic Peninsula, with haplotypes of P. aequipapillae becoming progressively more diverse in a clockwise direction from the South Shetland Islands to the Amundsen Sea. This pattern is akin to that seen in ring species, although we suggest that comparatively warm bottom water acts as a physical barrier preventing completion of the ring.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    The Linnean Society of London | Oxford Acedemic
    In:  Biological Journal of the Linnean Society, 95 (1). pp. 205-218.
    Publication Date: 2021-07-23
    Description: A morphological dataset based on 14 standard counts and indices was constructed for 68 specimens comprising 12 species of octopuses. This was used to construct distance matrices based on morphological characters. These matrices were compared with genetic distance matrices compiled during molecular phylogenetic analyses of the same 12 species using four mitochondrial and two nuclear genes. Mantel tests showed that there was significant congruence between the phenetic and genetic matrices, suggesting that the genetic signal is reflected in the morphological data set. Matrices of geographical distance were constructed for the 12 species based on the latitude, longitude, and depth of capture of 1726 individuals. These matrices never showed significant congruence with genetic data or with morphological data. Multivariate analysis of the morphological dataset suggests that these counts and indices, traditionally used for discriminating between species in cephalopods, do not show great discrimination at species level, but provide excellent discrimination at the generic level, and, as such, might be useful for resolving the generic placement of some problematic taxa.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-08-10
    Description: A new genus of octopus, Sasakiopus, is erected for the species S. salebrosus (Sasaki, 1920) n. comb. Sasakiopus salebrosus is redescribed from the holotype and from new material recently collected in the eastern Bering Sea. Molecular phylogenetic analysis of one nuclear and three mitochondrial genes revealed that the new genus is the sister taxon of a clade containing the genera Benthoctopus and Vulcanoctopus. The clade containing Sasakiopus, Benthoctopus and Vulcanoctopus is the sister group of Enteroctopus. The genus Bathypolypus falls outside this clade. Sasakiopus differs from Bathypolypus and Enteroctopus by the shape of its ligula (simple in Sasakiopus and Benthoctopus, laminate in Bathypolypus and elongate in Enteroctopus), from Enteroctopus by the absence of enlarged suckers in mature male animals and from Benthoctopus by its skin sculpture and ability to ink.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-08
    Description: Background: The giant squid (Architeuthis dux; Steenstrup, 1857) is an enigmatic giant mollusc with a circumglobal distribution in the deep ocean, except in the high Arctic and Antarctic waters. The elusiveness of the species makes it difficult to study. Thus, having a genome assembled for this deep-sea-dwelling species will allow several pending evolutionary questions to be unlocked. Findings: We present a draft genome assembly that includes 200 Gb of Illumina reads, 4 Gb of Moleculo synthetic long reads, and 108 Gb of Chicago libraries, with a final size matching the estimated genome size of 2.7 Gb, and a scaffold N50 of 4.8 Mb. We also present an alternative assembly including 27 Gb raw reads generated using the Pacific Biosciences platform. In addition, we sequenced the proteome of the same individual and RNA from 3 different tissue types from 3 other species of squid (Onychoteuthis banksii, Dosidicus gigas, and Sthenoteuthis oualaniensis) to assist genome annotation. We annotated 33,406 protein-coding genes supported by evidence, and the genome completeness estimated by BUSCO reached 92%. Repetitive regions cover 49.17% of the genome. Conclusions: This annotated draft genome of A. dux provides a critical resource to investigate the unique traits of this species, including its gigantism and key adaptations to deep-sea environments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-01-31
    Description: It is now recognised that the biology of almost any organism cannot be fully understood without recognising the existence and potential functional importance of associated microbes. Arguably, the emergence of this holistic viewpoint may never have occurred without the development of a crucial molecular technique, 16S rDNA amplicon sequencing, which allowed microbial communities to be easily profiled across a broad range of contexts. A diverse array of molecular techniques are now used to profile microbial communities, infer their evolutionary histories, visualise them in host tissues, and measure their molecular activity. In this review, we examine each of these categories of measurement and inference with a focus on the questions they make tractable, and the degree to which their capabilities and limitations shape our view of the holobiont.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-08-23
    Description: Recent molecular studies investigating higher-level phylogenetics of coleoid cephalopods (octopuses, squids and cuttlefishes) have produced conflicting results. A wide range of sequence alignment and analysis methods are used in cephalopod phylogenetic studies. The present study investigated the effect of commonly used alignment and analysis methods on higher-level cephalopod phylogenetics. Two sequence homology methods: (1) eye alignment, (2) implied alignment, and three analysis methods: (1) parsimony, (2) maximum likelihood, (3) Bayesian methodologies, were employed on the longest sequence dataset available for the coleoid cephalopods, comprising three mitochondrial and six nuclear loci. The data were also tested for base composition heterogeneity, which was detected in three genes and resolved using RY coding. The Octopoda, Argonautoidea, Oegopsida and Ommastrephidae are monophyletic in the phylogenies resulting from each of the alignment and analysis combinations. Furthermore, the Bathyteuthidae are the sister taxon of the Oegopsida in each case. However many relationships within the Coleoidea differed depending upon the alignment and analysis method used. This study demonstrates how differences in alignment and analysis methods commonly used in cephalopod phylogenetics can lead to different, but often highly supported, relationships.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-08-23
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-08-23
    Description: The resolution of higher level phylogeny of the coleoid cephalopods (octopuses, squids, and cuttlefishes) has been hindered by homoplasy among morphological characters in conjunction with a very poor fossil record. Initial molecular studies, based primarily on small fragments of single mitochondrial genes, have produced little resolution of the deep relationships amongst coleoid cephalopod families. The present study investigated this issue using 3415 base pairs (bp) from three nuclear genes (octopine dehydrogenase, pax-6, and rhodopsin) and three mitochondrial genes (12S rDNA, 16S rDNA, and cytochrome oxidase I) from a total of 35 species (including representatives of each of the higher level taxa). Bayesian analyses were conducted on mitochondrial and nuclear genes separately and also all six genes together. Separate analyses were conducted with the data partitioned by gene, codon/rDNA, gene + codon/rDNA or not partitioned at all. In the majority of analyses partitioning the data by gene + codon was the appropriate model with partitioning by codon the second most selected model. In some instances the topology varied according to the model used. Relatively high posterior probabilities and high levels of congruence were present between the topologies resulting from the analysis of all Octopodiform (octopuses and vampire “squid”) taxa for all six genes, and independently for the datasets of mitochondrial and nuclear genes. In contrast, the highest levels of resolution within the Decapodiformes (squids and cuttlefishes) resulted from analysis of nuclear genes alone. Different higher level Decapodiform topologies were obtained through the analysis of only the 1st + 2nd codon positions of nuclear genes and of all three codon positions. It is notable that there is strong evidence of saturation among the 3rd codon positions within the Decapodiformes and this may contribute spurious signal. The results suggest that the Decapodiformes may have radiated earlier and/or had faster rates of evolution than the Octopodiformes. The following taxonomic conclusions are drawn from our analyses: (1) the order Octopoda and suborders Cirrata, Incirrata, and Oegopsida are monophyletic groups; (2) the family Spirulidae (Ram’s horn squids) are the sister taxon to the family Sepiidae (cuttlefishes); (3) the family Octopodidae, as currently defined, is paraphyletic; (4) the superfamily Argonautoidea are basal within the suborder Incirrata; and (5) the benthic octopus genera Benthoctopus and Enteroctopus are sister taxa.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Springer
    In:  Reviews in Fish Biology and Fisheries, 17 (2-3). pp. 337-344.
    Publication Date: 2021-08-23
    Description: The concept of a Barcode of Life Database (BoLD) for the Class Cephalopoda (Phylum Mollusca) was introduced at the Cephalopod International Advisory Council (CIAC) symposium in Hobart, Australia, February 2006. This suggestion was met with significant interest, concern and debate. This review attempts to describe the concept of the BoLD initiative and to outline considerations and concerns specific to a cephalopod BoLD.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...