GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Cape, Mattias R; Straneo, Fiammetta; Beaird, Nicholas; Bundy, Randelle M; Charette, Matthew A (2019): Nutrient release to oceans from buoyancy-driven upwelling at Greenland tidewater glaciers. Nature Geoscience, 12(1), 34-39, https://doi.org/10.1038/s41561-018-0268-4
    Publication Date: 2023-01-13
    Description: This dataset contains hydrographic observations from Sermilik Fjord in SE Greenland, collected in August 2015 aboard the RV Adolf Jensen.
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-03-03
    Description: This dataset contains discrete total dissolvable iron (TdFe) data collected from the surface of Sermilik Fjord in SE Greenland in August 2015 aboard the RV Adolf Jensen. Surface samples were collected using a trace metal clean sampler fixed to a plastic pole. Samples were taken while the ship was steaming at approximately 1 knot in order to minimize contamination from the ship. All bottles and plasticware were cleaned using trace metal clean procedures outlined in the U.S. GEOTRACES protocols. Unfiltered samples were placed in separate trace metal clean 250 mL low-density polyethylene bottles and immediately acidified to pH 1.8 with 4 mL Optima HCl (Fisher Scientific) and stored until analysis using standard addition methods and cathodic stripping voltammetry 4 months later in the lab at the Woods Hole Oceanographic Institution.
    Keywords: Adolf Jensen; AJ_201508; AJ_201508_1SWS; AJ_201508_23SWS; AJ_201508_25SWS; AJ_201508_27SWS; AJ_201508_28SWS; AJ_201508_30SWS; AJ_201508_32SWS; AJ_201508_34SWS; AJ_201508_3SWS; AJ_201508_5SWS; AJ_201508_7SWS; DATE/TIME; Iron, dissolvable; Latitude of event; Longitude of event; Sermilik Fjord, SE Greenland; Station label; Surface water sample; SWS
    Type: Dataset
    Format: text/tab-separated-values, 33 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-07-26
    Description: This dataset contains hydrographic observations from Sermilik Fjord in SE Greenland, collected in August 2015 aboard the RV Adolf Jensen, including discrete data derived from water sample analyses and corresponding CTD sensor data. CTD data were collected using a Seabird 25Plus Sealogger equipped with a SBE 43 dissolved oxygen sensor, a Satlantic PAR LOG sensor, and a Wetlabs / Seabird ECO Triplet (chlorophyll-a and CDOM fluorescence, as well as backscattering at 700 nm). Discrete samples for nitrate, phosphate, silicate, and ammonium, were filtered through a sterile 0.22 µM Sterivex filter using standard protocols and kept frozen at -20 °C for later analysis at the Woods Hole Oceanographic Institution Nutrient Analytical Facility. Dissolved nutrient concentrations were quantified using a SEAL AA3 four-channel segmented flow analyzer.
    Keywords: Adolf Jensen; AJ_201508; AJ_201508_10; AJ_201508_12; AJ_201508_15; AJ_201508_16; AJ_201508_17; AJ_201508_20; AJ_201508_22; AJ_201508_23; AJ_201508_24; AJ_201508_29; AJ_201508_31; AJ_201508_32; AJ_201508_33; Ammonium; Bottle number; Conductivity; CTD/Rosette; CTD-RO; Date/Time of event; DEPTH, water; Fluorescence, chlorophyll; Fluorescence, colored dissolved organic matter; Fluorometer, WET Labs ECO AFL/FL; Latitude of event; Longitude of event; Nitrate; Optical backscattering coefficient, 700 nm; Oxygen; Oxygen, dissolved; Oxygen sensor, SBE 43; Phosphate; Pressure, water; Radiation, photosynthetically active; Salinity; Sermilik Fjord, SE Greenland; Silicate; Station label; Strain gauge; Temperature, water; WET Labs CDOM; WET Labs ECO BB
    Type: Dataset
    Format: text/tab-separated-values, 2256 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-01-08
    Description: Ice flow models of the Antarctic ice sheet are commonly used to simulate its future evolution in response to different climate scenarios and assess the mass loss that would contribute to future sea level rise. However, there is currently no consensus on estimates of the future mass balance of the ice sheet, primarily because of differences in the representation of physical processes, forcings employed and initial states of ice sheet models. This study presents results from ice flow model simulations from 13 international groups focusing on the evolution of the Antarctic ice sheet during the period 2015–2100 as part of the Ice Sheet Model Intercomparison for CMIP6 (ISMIP6). They are forced with outputs from a subset of models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), representative of the spread in climate model results. Simulations of the Antarctic ice sheet contribution to sea level rise in response to increased warming during this period varies between −7.8 and 30.0 cm of sea level equivalent (SLE) under Representative Concentration Pathway (RCP) 8.5 scenario forcing. These numbers are relative to a control experiment with constant climate conditions and should therefore be added to the mass loss contribution under climate conditions similar to present-day conditions over the same period. The simulated evolution of the West Antarctic ice sheet varies widely among models, with an overall mass loss, up to 18.0 cm SLE, in response to changes in oceanic conditions. East Antarctica mass change varies between −6.1 and 8.3 cm SLE in the simulations, with a significant increase in surface mass balance outweighing the increased ice discharge under most RCP 8.5 scenario forcings. The inclusion of ice shelf collapse, here assumed to be caused by large amounts of liquid water ponding at the surface of ice shelves, yields an additional simulated mass loss of 28 mm compared to simulations without ice shelf collapse. The largest sources of uncertainty come from the climate forcing, the ocean-induced melt rates, the calibration of these melt rates based on oceanic conditions taken outside of ice shelf cavities and the ice sheet dynamic response to these oceanic changes. Results under RCP 2.6 scenario based on two CMIP5 climate models show an additional mass loss of 0 and 3 cm of SLE on average compared to simulations done under present-day conditions for the two CMIP5 forcings used and display limited mass gain in East Antarctica.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-08
    Description: The structure, transport, and seasonal variability of the West Greenland boundary current system near Cape Farewell are investigated using a high-resolution mooring array deployed from 2014 to 2018. The boundary current system is comprised of three components: the West Greenland Coastal Current, which advects cold and fresh Upper Polar Water (UPW); the West Greenland Current, which transports warm and salty Irminger Water (IW) along the upper slope and UPW at the surface; and the Deep Western Boundary Current, which advects dense overflow waters. Labrador Sea Water (LSW) is prevalent at the seaward side of the array within an offshore recirculation gyre and at the base of the West Greenland Current. The 4-yr mean transport of the full boundary current system is 31.1 ± 7.4 Sv (1 Sv ≡ 106 m3 s-1), with no clear seasonal signal. However, the individual water mass components exhibit seasonal cycles in hydrographic properties and transport. LSW penetrates the boundary current locally, through entrainment/mixing from the adjacent re-circulation gyre, and also enters the current upstream in the Irminger Sea. IW is modified through air–sea interaction during winter along the length of its trajectory around the Irminger Sea, which converts some of the water to LSW. This, together with the seasonal increase in LSW entering the current, results in an anticorrelation in transport between these two water masses. The seasonality in UPW transport can be explained by remote wind forcing and subsequent adjustment via coastal trapped waves. Our results provide the first quantitatively robust observational description of the boundary current in the eastern Labrador Sea.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-01-31
    Description: Rapid mass loss from the Greenland Ice Sheet (GrIS) is affecting sea level and, through increased freshwater and sediment discharge, ocean circulation, sea-ice, biogeochemistry, and marine ecosystems around Greenland. Key to interpreting ongoing and projecting future ice loss, and its impact on the ocean, is understanding exchanges of heat, freshwater, and nutrients that occur at the GrIS marine margins. Processes governing these exchanges are not well understood because of limited observations from the regions where glaciers terminate into the ocean and the challenge of modeling the spatial and temporal scales involved. Thus, notwithstanding their importance, ice sheet/ocean exchanges are poorly represented or not accounted for in models used for projection studies. Widespread community consensus maintains that concurrent and long-term records of glaciological, oceanic, and atmospheric parameters at the ice sheet/ocean margins are key to addressing this knowledge gap by informing understanding, and constraining and validating models. Through a series of workshops and documents endorsed by the community-at-large, a framework for an international, collaborative, Greenland Ice sheet-Ocean Observing System (GrIOOS), that addresses the needs of society in relation to a changing GrIS, has been proposed. This system would consist of a set of ocean, glacier, and atmosphere essential variables to be collected at a number of diverse sites around Greenland for a minimum of two decades. Internationally agreed upon data protocols and data sharing policies would guarantee uniformity and availability of the information for the broader community. Its development, maintenance, and funding will require close international collaboration. Engagement of end-users, local people, and groups already active in these areas, as well as synergy with ongoing, related, or complementary networks will be key to its success and effectiveness.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  The Cryosphere, 13 . pp. 815-825.
    Publication Date: 2022-01-31
    Description: Surface melting is a major driver of Greenland's mass loss. Yet, the mechanisms that trigger melt are still insufficiently understood because seasonally based studies blend processes initiating melt with positive feedbacks. Here, we focus on the triggers of melt by examining the synoptic atmospheric conditions associated with 313 rapid melt increases, detected in a satellite-derived melt extent product, equally distributed throughout the year over the period 1979–2012. By combining reanalysis and weather station data, we show that melt is initiated by a cyclone-driven, southerly flow of warm, moist air, which gives rise to large-scale precipitation. A decomposition of the synoptic atmospheric variability over Greenland suggests that the identified, melt-triggering weather pattern accounts for ∼40 % of the net precipitation, but increases in the frequency, duration and areal extent of the initiated melting have shifted the line between mass gain and mass loss as more melt and rainwater run off or accumulate in the snowpack. Using a regional climate model, we estimate that the initiated melting more than doubled over the investigated period, amounting to ∼28 % of the overall surface melt and revealing that, despite the involved mass gain, year-round precipitation events are participating in the ice sheet's decline.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: The land ice contribution to global mean sea level rise has not yet been predicted1 using ice sheet and glacier models for the latest set of socio-economic scenarios, nor using coordinated exploration of uncertainties arising from the various computer models involved. Two recent international projects generated a large suite of projections using multiple models2,3,4,5,6,7,8, but primarily used previous-generation scenarios9 and climate models10, and could not fully explore known uncertainties. Here we estimate probability distributions for these projections under the new scenarios11,12 using statistical emulation of the ice sheet and glacier models. We find that limiting global warming to 1.5 degrees Celsius would halve the land ice contribution to twenty-first-century sea level rise, relative to current emissions pledges. The median decreases from 25 to 13 centimetres sea level equivalent (SLE) by 2100, with glaciers responsible for half the sea level contribution. The projected Antarctic contribution does not show a clear response to the emissions scenario, owing to uncertainties in the competing processes of increasing ice loss and snowfall accumulation in a warming climate. However, under risk-averse (pessimistic) assumptions, Antarctic ice loss could be five times higher, increasing the median land ice contribution to 42 centimetres SLE under current policies and pledges, with the 95th percentile projection exceeding half a metre even under 1.5 degrees Celsius warming. This would severely limit the possibility of mitigating future coastal flooding. Given this large range (between 13 centimetres SLE using the main projections under 1.5 degrees Celsius warming and 42 centimetres SLE using risk-averse projections under current pledges), adaptation planning for twenty-first-century sea level rise must account for a factor-of-three uncertainty in the land ice contribution until climate policies and the Antarctic response are further constrained.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: The Earth climate system is out of energy balance, and heat has accumulated continuously over the past decades, warming the ocean, the land, the cryosphere, and the atmosphere. According to the Sixth Assessment Report by Working Group I of the Intergovernmental Panel on Climate Change, this planetary warming over multiple decades is human-driven and results in unprecedented and committed changes to the Earth system, with adverse impacts for ecosystems and human systems. The Earth heat inventory provides a measure of the Earth energy imbalance (EEI) and allows for quantifying how much heat has accumulated in the Earth system, as well as where the heat is stored. Here we show that the Earth system has continued to accumulate heat, with 381±61 ZJ accumulated from 1971 to 2020. This is equivalent to a heating rate (i.e., the EEI) of 0.48±0.1 W m−2. The majority, about 89 %, of this heat is stored in the ocean, followed by about 6 % on land, 1 % in the atmosphere, and about 4 % available for melting the cryosphere. Over the most recent period (2006–2020), the EEI amounts to 0.76±0.2 W m−2. The Earth energy imbalance is the most fundamental global climate indicator that the scientific community and the public can use as the measure of how well the world is doing in the task of bringing anthropogenic climate change under control. Moreover, this indicator is highly complementary to other established ones like global mean surface temperature as it represents a robust measure of the rate of climate change and its future commitment. We call for an implementation of the Earth energy imbalance into the Paris Agreement's Global Stocktake based on best available science. The Earth heat inventory in this study, updated from von Schuckmann et al. (2020), is underpinned by worldwide multidisciplinary collaboration and demonstrates the critical importance of concerted international efforts for climate change monitoring and community-based recommendations and we also call for urgently needed actions for enabling continuity, archiving, rescuing, and calibrating efforts to assure improved and long-term monitoring capacity of the global climate observing system. The data for the Earth heat inventory are publicly available, and more details are provided in Table 4.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: Subpolar overturning in the North Atlantic Ocean shows substantial seasonality, with a maximum in late spring, a minimum in early winter, and a total range of about 9 Sv, according to observations from the OSNAP array between 2014 and 2020. Understanding the variability of the Atlantic Meridional Overturning Circulation is essential for better predictions of our changing climate. Here we present an updated time series (August 2014 to June 2020) from the Overturning in the Subpolar North Atlantic Program. The 6-year time series allows us to observe the seasonality of the subpolar overturning and meridional heat and freshwater transports. The overturning peaks in late spring and reaches a minimum in early winter, with a peak-to-trough range of 9.0 Sv. The overturning seasonal timing can be explained by winter transformation and the export of dense water, modulated by a seasonally varying Ekman transport. Furthermore, over 55% of the total meridional freshwater transport variability can be explained by its seasonality, largely owing to overturning dynamics. Our results provide the first observational analysis of seasonality in the subpolar North Atlantic overturning and highlight its important contribution to the total overturning variability observed to date.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...