GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
  • 1
    Keywords: Hochschulschrift
    Type of Medium: Online Resource
    Pages: Online-Ressource (129 Blatt = 3,9 MB)
    Language: German
    Note: Zusammenfassung in deutscher und englischer Sprache
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Hochschulschrift ; Atlantischer Ozean Nord ; Meeresströmung ; Kohlendioxidstoffwechsel
    Type of Medium: Online Resource
    Pages: Online-Ressource
    DDC: 500
    Language: English
    Note: Kiel, Univ., Diss., 2010
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Forschungsbericht ; Gelöster organischer Stoff ; Sauerstoff ; Spurengas ; Pazifischer Ozean Süd
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (29 Seiten, 1,04 MB) , Diagramme
    Language: German
    Note: Förderkennzeichen BMBF 03G0243A , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Global Biogeochemical Cycles, 32 (9). pp. 1406-1419.
    Publication Date: 2021-03-19
    Description: The North Atlantic Ocean plays a major role in climate change not the least due to its importance in CO2 uptake and thus natural carbon sequestration. The CO2 concentration in its surface waters, which determines the ocean's CO2 sink/source function, varies on seasonal and interannual timescales and is mainly driven by air‐sea gas exchange, temperature variability and biological production/respiration. The variability in stable carbon isotope signatures can provide further insight and help to improve the understanding of the controls of the surface ocean carbon system. In this work, a cavity ringdown spectrometer was coupled to a classical, equilibrator‐based pCO2 system on a VOS line that regularly sails across the subpolar North Atlantic between North America and Europe. From 2012 to 2014, a 3‐year time series of underway surface δ13C(CO2) data was obtained along with continuous measurements of temperature, salinity and fCO2. We perform a decomposition of thermal and non‐thermal drivers of fCO2 and δ13C(CO2). The direct measurement of the surface ocean δ13C(CO2) allows us to estimate the mass flux and also the stable carbon isotope fractionation during air‐sea gas exchange. While the CO2 mass flow was in the range of 1 − 2 mol CO2 m−2 yr−1 on the shelves and 2.5 − 3.5 mol CO2 m−2 yr−1 in the open ocean, the isotope signature of this CO2 flux with respect to the sea surface ranged from −2.6 ± 1.4‰ on the shelves to −6.6 ± 0.9‰ in the western and −4.5 ± 0.9‰ in the eastern part of the open ocean section.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-02-08
    Description: Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFF) are based on energy statistics and cement production data, while emissions from land use and land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2008–2017), EFF was 9.4±0.5 GtC yr−1, ELUC 1.5±0.7 GtC yr−1, GATM 4.7±0.02 GtC yr−1, SOCEAN 2.4±0.5 GtC yr−1, and SLAND 3.2±0.8 GtC yr−1, with a budget imbalance BIM of 0.5 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For the year 2017 alone, the growth in EFF was about 1.6 % and emissions increased to 9.9±0.5 GtC yr−1. Also for 2017, ELUC was 1.4±0.7 GtC yr−1, GATM was 4.6±0.2 GtC yr−1, SOCEAN was 2.5±0.5 GtC yr−1, and SLAND was 3.8±0.8 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 405.0±0.1 ppm averaged over 2017. For 2018, preliminary data for the first 6–9 months indicate a renewed growth in EFF of +2.7 % (range of 1.8 % to 3.7 %) based on national emission projections for China, the US, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. The analysis presented here shows that the mean and trend in the five components of the global carbon budget are consistently estimated over the period of 1959–2017, but discrepancies of up to 1 GtC yr−1 persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations show (1) no consensus in the mean and trend in land-use change emissions, (2) a persistent low agreement among the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models, originating outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding the global carbon cycle compared with previous publications of this data set (Le Quéré et al., 2018, 2016, 2015a, b, 2014, 2013)
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-02-08
    Description: This work presents two new methods to estimate oceanic alkalinity (AT), dissolved inorganic carbon (CT), pH, and pCO2 from temperature, salinity, oxygen, and geolocation data. “CANYON-B” is a Bayesian neural network mapping that accurately reproduces GLODAPv2 bottle data and the biogeochemical relations contained therein. “CONTENT” combines and refines the four carbonate system variables to be consistent with carbonate chemistry. Both methods come with a robust uncertainty estimate that incorporates information from the local conditions. They are validated against independent GO-SHIP bottle and sensor data, and compare favorably to other state-of-the-art mapping methods. As “dynamic climatologies” they show comparable performance to classical climatologies on large scales but a much better representation on smaller scales (40–120 d, 500–1,500 km) compared to in situ data. The limits of these mappings are explored with pCO2 estimation in surface waters, i.e., at the edge of the domain with high intrinsic variability. In highly productive areas, there is a tendency for pCO2 overestimation due to decoupling of the O2 and C cycles by air-sea gas exchange, but global surface pCO2 estimates are unbiased compared to a monthly climatology. CANYON-B and CONTENT are highly useful as transfer functions between components of the ocean observing system (GO-SHIP repeat hydrography, BGC-Argo, underway observations) and permit the synergistic use of these highly complementary systems, both in spatial/temporal coverage and number of observations. Through easily and robotically-accessible observations they allow densification of more difficult-to-observe variables (e.g., 15 times denser AT and CT compared to direct measurements). At the same time, they give access to the complete carbonate system. This potential is demonstrated by an observation-based global analysis of the Revelle buffer factor, which shows a significant, high latitude-intensified increase between +0.1 and +0.4 units per decade. This shows the utility that such transfer functions with realistic uncertainty estimates provide to ocean biogeochemistry and global climate change research. In addition, CANYON-B provides robust and accurate estimates of nitrate, phosphate, and silicate. Matlab and R code are available at https://github.com/HCBScienceProducts/. Introduction
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-23
    Description: Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates as well as consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2005–2014), EFF was 9.0 ± 0.5 GtC yr−1, ELUC was 0.9 ± 0.5 GtC yr−1, GATM was 4.4 ± 0.1 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1, and SLAND was 3.0 ± 0.8 GtC yr−1. For the year 2014 alone, EFF grew to 9.8 ± 0.5 GtC yr−1, 0.6 % above 2013, continuing the growth trend in these emissions, albeit at a slower rate compared to the average growth of 2.2 % yr−1 that took place during 2005–2014. Also, for 2014, ELUC was 1.1 ± 0.5 GtC yr−1, GATM was 3.9 ± 0.2 GtC yr−1, SOCEAN was 2.9 ± 0.5 GtC yr−1, and SLAND was 4.1 ± 0.9 GtC yr−1. GATM was lower in 2014 compared to the past decade (2005–2014), reflecting a larger SLAND for that year. The global atmospheric CO2 concentration reached 397.15 ± 0.10 ppm averaged over 2014. For 2015, preliminary data indicate that the growth in EFF will be near or slightly below zero, with a projection of −0.6 [range of −1.6 to +0.5] %, based on national emissions projections for China and the USA, and projections of gross domestic product corrected for recent changes in the carbon intensity of the global economy for the rest of the world. From this projection of EFF and assumed constant ELUC for 2015, cumulative emissions of CO2 will reach about 555 ± 55 GtC (2035 ± 205 GtCO2) for 1870–2015, about 75 % from EFF and 25 % from ELUC. This living data update documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this data set (Le Quéré et al., 2015, 2014, 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2015).
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 122 (1). pp. 171-184.
    Publication Date: 2020-02-06
    Description: The tropical Atlantic exerts a major influence in climate variability through strong air-sea interactions. Within this region, the eastern side of the equatorial band is characterized by strong seasonality, whereby the most prominent feature is the annual development of the Atlantic Cold Tongue (ACT). This band of low sea surface temperatures (∼22-23°C) is typically associated with upwelling-driven enhancement of surface nutrient concentrations and primary production. Based on a detailed investigation of the distribution and sea-to-air fluxes of N2O in the eastern equatorial Atlantic (EEA), we show that the onset and seasonal development of the ACT can be clearly observed in surface N2O concentrations, which increase progressively as the cooling in the equatorial region proceeds during spring-summer. We observed a strong influence of the surface currents of the EEA on the N2O distribution, which allowed identifying “high” and “low” concentration regimes that were, in turn, spatially delimited by the extent of the warm eastward-flowing North Equatorial Countercurrent and the cold westward-flowing South Equatorial Current. Estimated sea-to-air fluxes of N2O from the ACT (mean 5.18±2.59 µmol m−2 d−1) suggests that in May-July 2011 this cold-water band doubled the N2O efflux to the atmosphere with respect to the adjacent regions, highlighting its relevance for marine tropical emissions of N2O. This article is protected by copyright. All rights reserved.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-09-23
    Description: The role of the global surface ocean as a source and sink for atmospheric carbon dioxide and the flux strengths between the ocean and the atmosphere can be quantified by measuring the fugacity of CO2 (ƒCO2) as well as the dissolved inorganic carbon (DIC) concentration and its isotopic composition in surface seawater. In this work, the potential of continuous wave cavity ringdown spectroscopy (cw-CRDS) for autonomous underway measurements of ƒCO2 and the stable carbon isotope ratio of DIC [δ13C(DIC)] is explored. For the first time, by using a conventional air-sea equilibrator setup, both quantities were continuously and simultaneously recorded during a field deployment on two research cruises following meridional transects across the Atlantic Ocean (Bremerhaven, Germany–Punta Arenas, Chile). Data are compared against reference measurements by an established underway CO2 monitoring system and isotope ratio mass spectrometric analysis of individual water samples. Agreement within ΔƒCO2 = 0.35 μatm for atmospheric and ΔƒCO2 = 2.5 μatm and Δδ13C(DIC) =0.33‰ for seawater measurements have been achieved. Whereas “calibration-free” ƒCO2 monitoring is feasible, the measurement of accurate isotope ratios relies on running reference standards on a daily basis. Overall, the installed CRDS/equilibrator system was shown to be capable of reliable online monitoring of ƒCO2, equilibrium δ13C(CO2), δ13C(DIC), and pO2 aboard moving research vessels, thus making possible corresponding measurements with high spatial and temporal resolution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 31 (1). pp. 181-196.
    Publication Date: 2020-08-04
    Description: We present a detailed quality assessment of a novel underwater sensor for the measurement of CO2 partial pressure (pCO2) based on surface water field deployments carried out between 2008 and 2011. The commercially available sensor, which is based on membrane equilibration and NDIR spectrometry is small and can be integrated into mobile platforms. It is calibrated in water against a proven flow-through pCO2 instrument within a custom-built calibration setup. The aspect of highest concern with respect to achievable data quality of the sensor is the compensation for signal drift inevitably connected to absorption measurements. We use three means to correct for drift effects: (i) a filter correlation or dual-beam setup, (ii) regular zero gas measurements realized automatically within the sensor and (iii) a zero-based transformation of two sensor calibrations flanking the time of sensor deployment. Three sensors were tested against an underway pCO2 system during two major research cruises providing an in situ temperature range from 7.4 to 30.1°C and pCO2 values between 289 and 445 μatm. The average difference between sensor and reference pCO2 was found to be -0.6 ± 3 μatm with a RMSE of 3.7 μatm.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...