GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-09-23
    Description: In this paper we provide an overview of new knowledge on oxygen depletion (hypoxia) and related phenomena in aquatic systems resulting from the EU-FP7 project HYPOX ("In situ monitoring of oxygen depletion in hypoxic ecosystems of coastal and open seas, and landlocked water bodies", www.hypox.net). In view of the anticipated oxygen loss in aquatic systems due to eutrophication and climate change, HYPOX was set up to improve capacities to monitor hypoxia as well as to understand its causes and consequences. Temporal dynamics and spatial patterns of hypoxia were analyzed in field studies in various aquatic environments, including the Baltic Sea, the Black Sea, Scottish and Scandinavian fjords, Ionian Sea lagoons and embayments, and Swiss lakes. Examples of episodic and rapid (hours) occurrences of hypoxia, as well as seasonal changes in bottom-water oxygenation in stratified systems, are discussed. Geologically driven hypoxia caused by gas seepage is demonstrated. Using novel technologies, temporal and spatial patterns of water-column oxygenation, from basin-scale seasonal patterns to meter-scale sub-micromolar oxygen distributions, were resolved. Existing multidecadal monitoring data were used to demonstrate the imprint of climate change and eutrophication on long-term oxygen distributions. Organic and inorganic proxies were used to extend investigations on past oxygen conditions to centennial and even longer timescales that cannot be resolved by monitoring. The effects of hypoxia on faunal communities and biogeochemical processes were also addressed in the project. An investigation of benthic fauna is presented as an example of hypoxia-devastated benthic communities that slowly recover upon a reduction in eutrophication in a system where naturally occurring hypoxia overlaps with anthropogenic hypoxia. Biogeochemical investigations reveal that oxygen intrusions have a strong effect on the microbially mediated redox cycling of elements. Observations and modeling studies of the sediments demonstrate the effect of seasonally changing oxygen conditions on benthic mineralization pathways and fluxes. Data quality and access are crucial in hypoxia research. Technical issues are therefore also addressed, including the availability of suitable sensor technology to resolve the gradual changes in bottom-water oxygen in marine systems that can be expected as a result of climate change. Using cabled observatories as examples, we show how the benefit of continuous oxygen monitoring can be maximized by adopting proper quality control. Finally, we discuss strategies for state-of-the-art data archiving and dissemination in compliance with global standards, and how ocean observations can contribute to global earth observation attempts.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  EPIC3Symposium "Plastikmüll: Umweltwirkungen, gesundheitliche Aspekte und Verbraucherverhalten", Hochschule für Angewandte Wissenschaft, Hamburg, Germany, 2018-06-04
    Publication Date: 2018-06-06
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PERGAMON-ELSEVIER SCIENCE LTD
    In:  EPIC3Marine Pollution Bulletin, PERGAMON-ELSEVIER SCIENCE LTD, 131, pp. 763-772, ISSN: 0025-326X
    Publication Date: 2018-06-04
    Description: In coastal waters the identification of sources, trajectories and deposition sites of marine litter is often hampered by the complex oceanography of shallow shelf seas. We conducted a multi-annual survey on litter at the sea surface and on the seafloor in the south-eastern North Sea. Bottom trawling was identified as a major source of marine litter. Oceanographic modelling revealed that the distribution of floating litter in the North Sea is largely determined by the site of origin of floating objects whereas the trajectories are strongly influenced by wind drag. Methods adopted from species distribution modelling indicated that resuspension of benthic litter and nearbottom transport processes strongly influence the distribution of litter on the seafloor. Major sink regions for floating marine litter were identified at the west coast of Denmark and in the Skagerrak. Our results may support the development of strategies to reduce the pollution of the North Sea.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-24
    Description: In this paper we provide an overview of new knowledge on oxygen depletion (hypoxia) and related phenomena in aquatic systems resulting from the EU-FP7 project HYPOX (“In situ monitoring of oxygen depletion in hypoxic ecosystems of coastal and open seas, and landlocked water bodies”, www.hypox.net). In view of the anticipated oxygen loss in aquatic systems due to eutrophication and climate change, HYPOX was set up to improve capacities to monitor hypoxia as well as to understand its causes and consequences. Temporal dynamics and spatial patterns of hypoxia were analyzed in field studies in various aquatic environments, including the Baltic Sea, the Black Sea, Scottish and Scandinavian fjords, Ionian Sea lagoons and embayments, and Swiss lakes. Examples of episodic and rapid (hours) occurrences of hypoxia, as well as seasonal changes in bottom-water oxygenation in stratified systems, are discussed. Geologically driven hypoxia caused by gas seepage is demonstrated. Using novel technologies, temporal and spatial patterns of watercolumn oxygenation, from basin-scale seasonal patterns to meter-scale sub-micromolar oxygen distributions, were resolved. Existing multidecadal monitoring data were used to demonstrate the imprint of climate change and eutrophication on long-term oxygen distributions. Organic and inorganic proxies were used to extend investigations on past oxygen conditions to centennial and even longer timescales that cannot be resolved by monitoring. The effects of hypoxia on faunal communities and biogeochemical processes were also addressed in the project. An investigation of benthic fauna is presented as an example of hypoxia-devastated benthic communities that slowly recover upon a reduction in eutrophication in a system where naturally occurring hypoxia overlaps with anthropogenic hypoxia. Biogeochemical investigations reveal that oxygen intrusions have a strong effect on the microbially mediated redox cycling of elements. Observations and modeling studies of the sediments demonstrate the effect of seasonally changing oxygen conditions on benthic mineralization pathways and fluxes. Data quality and access are crucial in hypoxia research. Technical issues are therefore also addressed, including the availability of suitable sensor technology to resolve the gradual changes in bottom-water oxygen in marine systems that can be expected as a result of climate change. Using cabled observatories as examples, we show how the benefit of continuous oxygen monitoring can be maximized by adopting proper quality control. Finally, we discuss strategies for state-of-the-art data archiving and dissemination in compliance with global standards, and how ocean observations can contribute to global earth observation attempts.
    Description: Published
    Description: 1215-1259
    Description: 7A. Geofisica di esplorazione
    Description: JCR Journal
    Description: open
    Keywords: Hypoxia, oceans, gas ; 03. Hydrosphere::03.04. Chemical and biological::03.04.01. Biogeochemical cycles
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-07-04
    Description: Here, we revisit the existing concepts of the vertical structure of deep layers in the Black Sea using data from sensors deployed on profiling floats. The deep transition layer (DTL) between 700 and 1,700 m acts as an interface between the baroclinic layer and the largest bottom convective layer (BCL) of the world oceans. On top of DTL are the warm intermediate layer and deep cold intermediate layer. They both showed strong trends in the last 15 years due to warmer climate and intensification of warmer intrusions from Bosporus. A “salinity wave” was detected in 2005–2009 below ∼1,700 m, which evidenced for the first time the penetration of gravity flow from Bosporus down to the bottom. The layering of water masses was explained as resulting from the different distribution of sources of heat and salt, double diffusion, and balances between the geothermal and salinity flows in the BCL.
    Description: Plain Language Summary: A total of 5,927 profiles from 31 profiling floats deployed in the Black Sea after 2005 were used to study the thermohaline dynamic. The density ratio, which sets the conditions under which double diffusion could occur qualifies most of the depths below 600 m as a double‐diffusive environment, which was confirmed by the observed staircase structure of vertical profiles. The qualitative differences between the temperature and salinity profiles in DTL are explained by the different distributions of sources and sinks of heat and salt. This layer acts as a transition zone between the bottom convective layer and the baroclinic ocean. A deep cold intermediate layer (DCIL) occupies the top of the DTL. The former became pronounced in recent years as a consequence of the warming of upper water layers. The large salinity variations from 2005 to 2009 observed at the bottom of the DTL evidenced traces of the penetration of the Bosporus plume down to the bottom for the first time. Combining known values of geothermal flow and concepts from the theory of dynamics of salinity‐stratified tanks heated from below made it possible to quantify the mean annual volume of Bosporus water reaching the bottom.
    Description: Key Points: Profiling floats registered for the first time traces of Bosporus intrusions down to the bottom. The deep warm and cold intermediate layers are responsive to climate warming. Different sources of heat and salt dominate the transition between the baroclinic ocean and bottom convection layer.
    Keywords: 551.46 ; 551.46 ; baroclinicity ; double diffusion ; geothermal convection ; profiling floats ; sources of heat and salt ; water masses
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  EPIC3Geophysical Research Letters, 40, pp. 3085-3090
    Publication Date: 2017-02-01
    Description: Observations collected in the Black Sea from May 2010 until December 2011 from two Argo floats with oxygen sensors demonstrated the potential of the applied technique to deliver high-quality oxygen data in this oxic/anoxic environment where the oxygen concentration varies from the level of saturation to zero. It was demonstrated that the dynamics of the oxic-anoxic interface was dominated by vigorous mesoscale processes displacing locally anoxic waters up to about 70 m below the sea surface. Alternatively, oxygenation (ventilation) in the coastal zone penetrated down to about 150–200 m. The range of mesoscale variability, which appeared to reach half of the range of climatic trend during the last 50 years, helped to objectively assess the validity of interpretation of historical data. It was proved that the shift of the suboxic zone from isopycnal depth σt = 16.5 to σt = 15.5 during 1960–2010, interrupted by its deepening between 1990 and 2000, was greater than the possible error limit caused by insufficient sampling of mesoscale variability. Furthermore, profiling floats shed a new light into the seasonal variability of the subsurface oxygen maximum. It was also demonstrated that the assumption of isopycnal alignment of oxygen was coarsely applicable to the suboxic layer in both the coastal and interior part of the Black Sea where the isopycnal mixing revealed large temporal and spatial variability. Therefore, deeper understanding of the dynamics of suboxic zone necessitated continuous basin-wide sampling.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-10-07
    Description: In this paper we provide an overview of new knowledge on oxygen depletion (hypoxia) and related phenomena in aquatic systems resulting from the EU-FP7 project HYPOX (“In situ monitoring of oxygen depletion in hypoxic ecosystems of coastal and open seas, and landlocked water bodies”, www.hypox.net). In view of the anticipated oxygen loss in aquatic systems due to eutrophication and climate change, HYPOX was set up to improve capacities to monitor hypoxia as well as to understand its causes and consequences. Temporal dynamics and spatial patterns of hypoxia were analyzed in field studies in various aquatic environments, including the Baltic Sea, the Black Sea, Scottish and Scandinavian fjords, Ionian Sea lagoons and embayments, and Swiss lakes. Examples of episodic and rapid (hours) occurrences of hypoxia, as well as seasonal changes in bottom-water oxygenation in stratified systems, are discussed. Geologically driven hypoxia caused by gas seepage is demonstrated. Using novel technologies, temporal and spatial patterns of watercolumn oxygenation, from basin-scale seasonal patterns to meter-scale sub-micromolar oxygen distributions, were resolved. Existing multidecadal monitoring data were used to demonstrate the imprint of climate change and eutrophication on long-term oxygen distributions. Organic and inorganic proxies were used to extend investigations on past oxygen conditions to centennial and even longer timescales that cannot be resolved by monitoring. The effects of hypoxia on faunal communities and biogeochemical processes were also addressed in the project. An investigation of benthic fauna is presented as an example of hypoxia-devastated benthic communities that slowly recover upon a reduction in eutrophication in a system where naturally occurring hypoxia overlaps with anthropogenic hypoxia. Biogeochemical investigations reveal that oxygen intrusions have a strong effect on the microbially mediated redox cycling of elements. Observations and modeling studies of the sediments demonstrate the effect of seasonally changing oxygen conditions on benthic mineralization pathways and fluxes. Data quality and access are crucial in hypoxia research. Technical issues are therefore also addressed, including the availability of suitable sensor technology to resolve the gradual changes in bottom-water oxygen in marine systems that can be expected as a result of climate change. Using cabled observatories as examples, we show how the benefit of continuous oxygen monitoring can be maximized by adopting proper quality control. Finally, we discuss strategies for state-of-the-art data archiving and dissemination in compliance with global standards, and how ocean observations can contribute to global earth observation attempts.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-12-05
    Description: Data from profiling floats in the Black Sea revealed complex temporal and spatial relationships between physical variables and oxygen, chlorophyll and the backscattering coefficient at 700 nm, as well as some limits in understanding the details of biogeochemistry dynamics. To account for different interdependences between physical and biogeochemical properties, a feedforward backpropagation neural network (NN) was used. This NN learns from data recorded by profiling floats and predicts biogeochemical states using physical measurements only. The performance was very high, particularly for oxygen, but it decreased when the NN was applied to older data because the interrelationships between the physical and biogeochemical properties have changed recently. The biogeochemical states reconstructed by the NN using physical data produced by a coupled physical–biogeochemical operational model were better than the biogeochemical outputs of the same coupled model. Therefore, the use of data from profiling floats, physical properties from numerical models and NNs appears to be a powerful approach for reconstructing the 4D dynamics of the euphotic zone. Basin‐wide patterns and temporal variabilities in oxygen, backscattering coefficient and chlorophyll were also analyzed. Of particular interest is the reconstruction of short‐lived biogeochemical features, particularly in coastal anticyclone areas, which are difficult to observe with available floats at the basin scale.
    Description: Plain Language Summary: This study addresses the biogeochemical dynamics of the euphotic layer in the Black Sea. Observations are provided from profiling floats, and the observed biogeochemical parameters include oxygen, the backscattering coefficient at 700 nm and chlorophyll‐a. Data analysis showed complex temporal and spatial relationships between physical and biogeochemical variables and some limits in understanding the details of biogeochemical dynamics. A feedforward backpropagation neural network was developed, which can be considered an input–output mapping in which the neurons combine the input data in such a way that the output can be considered a nonlinear combination of input data. When applied to older data, the reconstruction performance decreases, suggesting a change in the dependency of biogeochemical characteristics on physical drivers caused by known climate change. A comparison with simulations from a coupled operational biogeochemical model shows that the neural network outperforms the numerical model. The newly proposed method, combining data from profiling floats, physical properties from numerical models and a backpropagation neural network, allows us to reconstruct the 4D dynamics of the euphotic layer over the period 2013–2020.
    Description: Key Points: Machine learning helps identify fundamental biogeochemical mechanisms in the Black Sea. A feedforward backpropagation neural network performs better than a coupled physical‐biogeochemical model. Data from profiling floats, physical data from numerical models and machine learning enabled the analysis of 4D biogeochemical dynamics.
    Description: MASRI
    Description: National Roadmap for Scientific Infrastructure
    Description: European Horizon 2020 project DOORS
    Description: https://resources.marine.copernicus.eu/product-detail/BLKSEA_MULTIYEAR_PHY_007_004/INFORMATION
    Description: https://resources.marine.copernicus.eu/product-detail/BLKSEA_REANALYSIS_BIO_007_005/INFORMATION
    Description: http://www.coriolis.eu.org/Data-Products/Data-selection
    Description: https://zenodo.org/record/6860705
    Keywords: ddc:551 ; biogeochemistry ; neural networks ; profiling floats ; euphotic zone
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...