GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (385 pages)
    Edition: 1st ed.
    ISBN: 9781119874003
    DDC: 546.6
    Language: English
    Note: Cover -- Title Page -- Copyright -- Contents -- Editor Biographies -- List of Contributors -- Preface -- Acknowledgment -- Chapter 1 Introduction to MXenes a Next‐generation 2D Material -- 1.1 Introduction -- 1.2 Properties -- 1.3 Synthesis and Functionalization of MXenes -- 1.4 Characterization of MXenes -- 1.5 Application of MXenes -- 1.5.1 Biomedical -- 1.5.2 Agricultural -- 1.5.3 Environmental -- 1.5.4 Miscellaneous Field -- 1.6 Current Scenario, Risk Assessment, and Challenges -- 1.7 Conclusion and Prospects -- References -- Chapter 2 Structure, Composition, and Functionalization of MXenes -- 2.1 Introduction -- 2.2 MXenes Composition -- 2.2.1 Group IV Elemental Analog -- 2.2.2 Group V Elemental Analog -- 2.2.3 Group VI Elemental Analog -- 2.3 Structural Analysis Regarding MXenes -- 2.3.1 Theoretical Studies -- 2.3.2 Computational Studies -- 2.4 Structure Functionalization of MXene -- 2.4.1 Different Group Used for Structural Functionalization -- 2.4.1.1 Oxygen‐Functionalized MXene -- 2.4.1.2 Sulfur‐Functionalized MXenes -- 2.4.1.3 Methoxy Group‐Functionalized MXenes -- 2.4.2 Factor Affecting the Structure Functionalization -- 2.4.2.1 Electric and Optical Properties -- 2.4.2.2 Thermal Conductivity -- 2.4.2.3 Electrochemical Properties -- 2.4.2.4 Thermoelectric Property -- 2.5 Conclusion and Future Prospects -- Acknowledgment -- References -- Chapter 3 Synthesis of MXenes -- 3.1 Introduction -- 3.2 Fabrication of MXene -- 3.2.1 Fabrication Through Etching Agents -- 3.2.1.1 HF Etchants -- 3.2.1.2 In situ HF Etchants -- 3.2.1.3 MXenes Preparation Through Fluoride Free Routes -- 3.2.1.4 Molten Fluoride Salt as Etchants -- 3.2.1.5 MXenes Prepared from Unconventional Al‐MAX Phases -- 3.3 Conclusion -- References -- Chapter 4 Physicochemical and Biological Properties of MXenes -- 4.1 Introduction -- 4.2 Structure and Synthesis of MXenes. , 4.3 Properties of MXenes -- 4.3.1 Biomedical Properties of MXenes -- 4.3.2 Electronic and Transport Properties -- 4.3.3 Optical Properties -- 4.3.4 Magnetic Properties -- 4.3.5 Topological Properties -- 4.3.6 Vibrational Properties -- 4.3.7 Electrochemical Properties -- 4.3.8 Thermal Properties -- 4.4 Conclusion and future Perspectives -- References -- Chapter 5 Processing and Characterization of MXenes and Their Nanocomposites -- 5.1 Introduction -- 5.2 Processing Techniques -- 5.2.1 Solution Blending -- 5.2.2 In Situ Polymerization Technique -- 5.2.3 Melt Blending -- 5.2.4 Electrospinning -- 5.2.5 Vacuum‐Assisted Filtration (VAF) Method -- 5.2.6 Spin Coating -- 5.3 Characterization Techniques -- 5.3.1 X‐Ray Diffraction (XRD) -- 5.3.2 Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy -- 5.3.3 X‐Ray Absorption Spectroscopy (XAS) -- 5.3.4 X‐Ray Photoelectron Spectroscopy (XPS) -- 5.3.5 Atomic Force Microscopy (AFM) -- 5.3.6 Nuclear Magnetic Resonance -- 5.3.7 Raman Spectroscopy -- 5.4 Conclusion -- References -- Chapter 6 Progressive Approach Toward MXenes Hydrogel -- 6.1 Hydrogels -- 6.1.1 Hydrogels Classification -- 6.1.2 Properties of Hydrogels -- 6.2 MXene‐Based Hydrogels -- 6.2.1 Applications of MXene Hydrogels -- 6.2.2 Mechanisms of Synthesis and Gelation of MXene Hydrogels -- 6.2.2.1 All‐MXene Hydrogels -- 6.2.2.2 MXene‐GO Nanocomposite Hydrogels -- 6.2.2.3 MXene‐polymer Nanocomposite Hydrogels -- 6.2.2.4 MXene‐metal Hybrid Nanocomposite Hydrogels -- 6.2.3 Properties of MXene‐Based Hydrogels -- 6.2.4 Applications of MXene‐Based Hydrogels -- 6.2.4.1 Energy Storage -- 6.2.4.2 Biomedical Applications -- 6.2.4.3 Catalysts -- 6.2.4.4 Sensors -- 6.3 Conclusions -- References -- Chapter 7 Comparison of MXenes with Other 2D Materials -- 7.1 Introduction of MXenes -- 7.2 MXenes vs. Carbon Materials. , 7.3 MXenes vs. 2D‐chalcogenide/Carbide/Nitride -- 7.4 MXenes vs. 2D Metal-Organic Frameworks -- 7.5 Summary -- References -- Chapter 8 Newly Emerging 2D MXenes for Hydrogen Storage -- 8.1 Introduction -- 8.2 Structural Properties of MXene -- 8.3 Synthesis Techniques -- 8.4 H2 Storage Reaction Mechanisms -- 8.4.1 Adsorption -- 8.4.2 Kinetics and Thermodynamics -- 8.4.2.1 Kinetic Models -- 8.4.2.2 Geometrical Contraction -- 8.4.2.3 Contracting Volume Model -- 8.4.2.4 Jander Model -- 8.4.2.5 Ginstling-Brounshtein Model -- 8.4.2.6 Valensi-Carter Model -- 8.4.2.7 Nucleation‐Growth Impingement Models -- 8.5 Factors Influencing H2 Storage -- 8.6 Recent Advances in MXene‐Based Compounds for H2 Storage -- 8.7 Conclusions -- 8.8 Future Perspectives and Challenges -- Acknowledgment -- References -- Chapter 9 MXenes for Supercapacitor Applications -- 9.1 Introduction -- 9.2 Two‐dimensional MXenes Structure -- 9.3 MXenes' Characteristics -- 9.3.1 Characteristics of the Structure -- 9.3.2 Electronic Characteristics -- 9.3.3 Optical Characteristics -- 9.3.4 Magnetic Characteristics -- 9.4 MXenes as a Source of Energy Storage -- 9.4.1 Supercapacitor Energy Storage Mechanism -- 9.4.2 Morphology's Effect on MXenes' Energy Storage -- 9.4.3 MXene Functional Group Reactivity and Supercapacitors -- 9.4.4 Electrolytes' Role in the Storage Technology -- 9.5 Supercapacitor Systems of MXene and Hybrid -- 9.5.1 MXene in Their Original State -- 9.5.2 MXene Heterostructures -- 9.5.3 Hybrids of Transition Metal Oxides in MXene -- 9.5.4 Hierarchical Anode Structure -- 9.5.5 Appropriate Positive Electrode Design -- 9.5.6 Microsupercapacitors -- 9.6 Prospects -- 9.7 Conclusion -- References -- Chapter 10 MXenes‐based Biosensors -- 10.1 Introduction -- 10.2 Biosensing Application -- 10.2.1 Biomedical -- 10.2.2 Environmental -- 10.2.3 Agricultural -- 10.3 Challenges and Limitations. , 10.4 Conclusion and Prospects -- References -- Chapter 11 Advances in Ti3C2 MXene and Its Composites for the Adsorption Process and Photocatalytic Applications -- 11.1 Introduction -- 11.2 Ti3C2 as Adsorbent for the Metal Ions -- 11.3 Photocatalytic Degradation Mechanism of Organic Pollutants via Ti3C2 MXene and Its Derivatives -- 11.3.1 Heterostructuring the Ti3C2 with Metal Oxides -- 11.3.2 Heterostructuring the Ti3C2/Ti3C2Tx with Metal Sulphides -- 11.3.3 Heterostructuring the Ti3C2/Ti3C2Tx with Ag/Bi‐based Semiconductors and Layered Double Hydroxides -- 11.4 Ternary Heterostructures based on the Ti3C2 -- 11.5 Gap Analysis -- 11.6 Conclusion -- Acknowledgements -- References -- Chapter 12 MXenes and its Hybrid Nanocomposites for Gas Sensing Applications in Breath Analysis -- 12.1 Introduction -- 12.2 Discussion -- 12.3 Conclusion -- References -- Chapter 13 MXenes for Catalysis and Electrocatalysis -- 13.1 Introduction -- 13.2 Application of MXene for Catalytic Processes -- 13.2.1 CO2 Reduction Reaction -- 13.2.2 Nitrogen Reduction Reaction -- 13.2.3 Oxygen Reduction Reaction -- 13.2.4 Oxygen Evolution Reactions -- 13.3 Strategies for Optimization of Catalytic Potential of MXenes -- 13.3.1 Termination Modification -- 13.3.2 Nanostructuring -- 13.3.3 Hybridization -- 13.3.4 Metal Atom Doping -- 13.4 Conclusion and Future Trend -- References -- Chapter 14 MXene and Its Hybrid Materials for Photothermal Therapy -- 14.1 Introduction -- 14.2 Photothermal Conversion -- 14.2.1 Localized Surface Plasmon Resonance Effect (LSPR) -- 14.2.2 Electron-Hole Generation -- 14.2.3 Hyperconjugation Effect -- 14.3 Optical and Thermal Properties of Mxenes -- 14.4 Photothermal Conversion Mechanism of MXenes -- 14.5 Applications of MXenes in Photothermal Therapy -- 14.5.1 Photothermal Therapy -- 14.5.2 PTT‐Coupled Chemotherapy -- 14.5.3 PTT Coupled Immunotherapy. , 14.6 Conclusion -- Acknowledgment -- Conflict of interest -- References -- Chapter 15 MXenes and Its Composites for Biomedical Applications -- 15.1 Introduction -- 15.2 Various Biomedical Applications of MXenes -- 15.2.1 Biosensor Applications -- 15.2.2 Cancer Treatment -- 15.2.3 Antibacterial Properties -- 15.2.4 Drug Delivery -- 15.3 Conclusion -- References -- Chapter 16 MXenes for Point of Care Devices (POC) -- 16.1 Introduction -- 16.2 Characteristics of MXenes on Biosensing -- 16.2.1 Advantages of MXene and its Derivatives for Biosensing -- 16.2.2 Disadvantages of MXene and its Derivatives for Biosensing -- 16.2.3 Sensing Mechanism of MXene Wearables -- 16.3 Point‐of‐Care Diagnosing COVID‐19: Methods Used to Date -- 16.4 Applications of MXenes as PoCs -- 16.4.1 Cancer Diagnosis -- 16.4.2 Diagnosis of Bacterial and Viral Diseases -- 16.5 Current Challenges and Future Outlook -- 16.6 Conclusion -- References -- Chapter 17 MXenes and Their Hybrids for Electromagnetic Interference Shielding Applications -- 17.1 Introduction -- 17.2 Properties of MXenes -- 17.2.1 Stability -- 17.2.2 Electrical Conductivity -- 17.2.3 Magnetic Properties -- 17.2.4 Dielectric Properties -- 17.3 Various MXene Hybrids For EMI‐Hielding -- 17.3.1 Textile‐based -- 17.3.2 Insulating Polymer‐based -- 17.3.3 Aerogels, Hydrogels, and Foams -- 17.3.4 Polymer Thin Films -- 17.3.5 Electrospun Mats -- 17.3.6 Paper‐Based Composites -- 17.3.7 Laminates -- 17.4 Intrinsically Conducting Polymer‐based -- 17.4.1 Aerogels, Hydrogels, and Foams -- 17.4.2 Polymer Thin Films -- 17.4.3 Paper -- 17.5 Graphene‐based -- 17.5.1 Foam/Aerogels -- 17.5.2 Films -- 17.5.3 Laminates -- 17.6 Conclusion -- References -- Chapter 18 Technological Aspects in the Development of MXenes and Its Hybrid Nanocomposites: Current Challenges and Prospects -- 18.1 Introduction. , 18.2 Progressive Approach Towards MXene Composites and Hybrids.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Bristol :Institute of Physics Publishing,
    Keywords: Electronic books.
    Description / Table of Contents: Providing an extensive review of the latest research, this book explores the prospects and limitations of using bionanomaterials in a range of environmental and agricultural applications. It is an invaluable reference for scientists, researchers and academics working in the fields of biomaterials, bionanotechnology, environmental science and agriculture, and an excellent introduction for students.
    Type of Medium: Online Resource
    Pages: 1 online resource (338 pages)
    Edition: 1st ed.
    ISBN: 9780750345552
    Series Statement: IOP Ebooks Series
    Language: English
    Note: Intro -- Preface -- Acknowledgements -- Editors biography -- Dr Ravindra Pratap Singh -- Mr Kshitij RB Singh -- List of contributors -- Chapter 1 Introduction: potentialities of bionanomaterials towards the environmental and agricultural domain -- 1.1 Introduction -- 1.2 Utilities of bionanomaterial for agriculture -- 1.3 Utilities of bionanomaterial for the environment -- 1.4 Conclusion and prospects -- Acknowledgment -- References -- Chapter 2 Antimicrobial potentialities: special emphasis on metal and metal oxide-based bionanomaterials -- 2.1 Introduction -- 2.2 Classification of metal and metal oxide-based bionanomaterials and their physicochemical properties -- 2.2.1 Silver-based bionanomaterials -- 2.2.2 Copper- based bionanomaterials -- 2.2.3 Gold-based bionanomaterials -- 2.2.4 Zinc-based bionanomaterials -- 2.2.5 Titanium-based bionanomaterials -- 2.2.6 Nickel-based metal NPs -- 2.3 Synthesis method of metal and metal oxide based bionanomaterial for antimicrobial properties -- 2.3.1 Plants -- 2.3.2 Microorganism -- 2.4 Mechanism of antimicrobial activity through metal and metal oxide-based bionanomaterials -- 2.4.1 General mechanistic pathway of the antimicrobial activity of nanoparticle-based metal and metal oxides -- 2.4.2 Antimicrobial mechanism of various metals and metal oxides -- 2.5 Future prospects and challenges -- 2.6 Concluding remarks and recommendations -- Acknowledgment -- References -- Chapter 3 Bionanocomposites for potential applications in agriculture -- 3.1 Introduction -- 3.2 Major components of a bionanocomposite-natural polymers -- 3.2.1 Starch -- 3.2.2 Cellulose -- 3.2.3 Lignin -- 3.2.4 Chitin/chitosan -- 3.2.5 Alginate -- 3.2.6 Protein -- 3.2.7 Other biopolymers and synthetically-derived polymers -- 3.3 Bionanocomposites synthesis -- 3.3.1 Solution intercalation -- 3.3.2 In situ intercalation polymerization. , 3.3.3 Melt intercalation -- 3.4 Bionanocomposite characterization -- 3.5 Agricultural applications of bionanocomposites -- 3.5.1 Bionanopesticides -- 3.5.2 Food packaging -- 3.5.3 Remediation -- 3.5.4 Bionanosensors -- 3.6 Challenges and opportunities in the usage and design of bionanocomposites -- 3.7 Conclusion -- Acknowledgment -- References -- Chapter 4 Utility of nanobiosensors in agriculture -- 4.1 Introduction -- 4.2 Nanobiosensor applications in agriculture -- 4.2.1 Electrochemical nanobiosensors -- 4.2.2 Optical nanobiosensors -- 4.2.3 Piezoelectric nanobiosensors -- 4.3 Conclusion and prospects -- Acknowledgments -- References -- Chapter 5 Role of biopesticides derived from bionanomaterials for enhanced food security and sustainable agriculture -- 5.1 Introduction -- 5.2 Utilization of bionanomaterials for valorization of several agricultural wastes -- 5.3 Utilization of bionanomaterials as bioherbicides -- 5.4 Application of bionanomaterials as bio-stimulators -- 5.5 Application of bionanomaterials as bioinsecticides -- 5.6 Application of bionanomaterials from plants in remediation of pesticides -- 5.7 Conclusion and future recommendations -- Acknowledgment -- References -- Chapter 6 Bionanoformulations: special emphasis on agricultural crop protection and growth -- 6.1 Introduction -- 6.1.1 Global scenario and challenges in agriculture -- 6.1.2 Nanotechnological interventions in agriculture -- 6.1.3 What are bionanoformulations -- 6.1.4 Significance of bionanoformulations -- 6.2 Different types/materials used for bionanoformulations synthesis -- 6.2.1 Cellulose nanoparticles and their derivatives -- 6.2.2 Dextran nanoparticles and their derivatives -- 6.2.3 Chitosan and carrageenan nanoparticles -- 6.2.4 Starch nanoparticles -- 6.2.5 Gelatin nanoparticles -- 6.3 Different approaches and methods for bionanoformulations synthesis. , 6.3.1 Top-down approach -- 6.3.2 Bottom-up approach -- 6.3.3 Methods of bionanoformulations synthesis -- 6.4 Examples and current status of bionanoformulations for crop protection and growth -- 6.5 Advantages and disadvantages of bionanoformulations -- 6.6 Gaps in agriculture crop protection -- 6.7 Future prospects of bionanoformulations in agriculture -- 6.8 Conclusion -- Acknowledgment -- References -- Chapter 7 Utility of metal oxide-based bionanocomposites for wastewater treatment -- 7.1 Introduction -- 7.2 Chitosan based metal oxide bionanocomposites -- 7.3 Cellulose based metal oxide nanobiocomposite -- 7.4 Guar gum based metal oxide bionanocomposite -- 7.5 Clay based bionanocomposites -- 7.6 Conclusion and prospects -- Acknowledgment -- References -- Chapter 8 Utility of bionanocomposites for wastewater treatment -- 8.1 Introduction -- 8.2 HMs and their toxicity -- 8.3 Nanomaterials as sorbents for wastewater treatment -- 8.4 BNCs as a sorbent for wastewater treatment -- 8.5 Factors affecting sorption of HMs using BNCs -- 8.5.1 Effect of pH -- 8.5.2 Effect of sorbent dosage -- 8.5.3 Effect of contact time -- 8.6 Mechanism of sorption of HMs using BNCs -- 8.6.1 Isotherms models -- 8.6.2 Kinetic models -- 8.6.3 Thermodynamics -- 8.7 Conclusion and prospects -- Acknowledgement -- References -- Chapter 9 Potentialities of bionanocomposite hydrogels for wastewater treatment -- 9.1 Introduction -- 9.2 Bionanocomposite hydrogels -- 9.3 Adsorptive removal of aqueous contaminants by bionanocomposite hydrogels -- 9.4 Biopolymers in nanocomposite hydrogels -- 9.4.1 Cellulose based BNCHs -- 9.4.2 Chitosan based BNCHs -- 9.4.3 Pectin based nanocomposite hydrogels -- 9.4.4 Carrageenan based nanocomposite hydrogels -- 9.5 Removal of heavy metals in aqueous solution -- 9.6 Removal of organic dyes in aqueous solution -- 9.7 Conclusions -- 9.8 Future prospects. , Acknowledgement -- References -- Chapter 10 Bionanomaterials utility in food industry and its challenges -- 10.1 Introduction -- 10.2 Bionanomaterials applications in food industry -- 10.2.1 New product formulations -- 10.2.2 Nanoencapsulation of functional components -- 10.2.3 Biosensing for food safety -- 10.2.4 Bionanomaterials for food packaging -- 10.3 Challenges and regulatory issues -- 10.4 Conclusion and prospects -- Acknowledgment -- References -- Chapter 11 Polymeric bionanomaterials for agricultural and environmental applications -- 11.1 Introduction -- 11.1.1 Preparation techniques -- 11.1.2 Surface modifications -- 11.1.3 Physicochemical properties and characterizations -- 11.2 Applications of polymeric bionanomaterials -- 11.2.1 Agricultural applications -- 11.2.2 Environmental applications -- 11.3 Conclusions -- 11.4 Challenges and future trends -- Acknowledgments -- References -- Chapter 12 Role of bionanomaterials for environmental remediation -- 12.1 Introduction -- 12.2 Synthesis of bionanomaterials -- 12.3 Environmental remediation by bionanomaterials -- 12.3.1 Adsorption -- 12.3.2 Catalytic transformation -- 12.3.3 Advanced oxidation process -- 12.3.4 Antimicrobial activities -- 12.4 Nanobiosensors for environmental monitoring -- 12.5 Conclusion and prospects -- Acknowledgment -- References -- Chapter 13 Nanobiosensors for environmental risk assessment -- 13.1 Introduction -- 13.2 Nanobiosensors -- 13.2.1 Components of nanobiosensors -- 13.3 Nanobiosensors in environmental monitoring -- 13.3.1 Detection of pesticides -- 13.3.2 Detection of pathogens -- 13.3.3 Detection of antibiotics -- 13.3.4 Detection of metals and heavy metals -- 13.4 Nanobiosensors for the detection of toxin pollutants -- 13.4.1 Endocrine disrupting chemicals -- 13.4.2 Phenolic pollutants. , 13.5 Plant biology and agriculture: What functions for nanobiosensors? -- 13.5.1 Nanobiosensors for soil-plant systems -- 13.5.2 Nanopesticides -- 13.5.3 Nanofertilizers -- 13.5.4 Herbicides -- 13.5.5 Fungicides -- 13.6 Environmental risk assessment: what is needed? -- 13.7 Challenges and future perspectives -- 13.8 Conclusion -- Acknowledgment -- References -- Chapter 14 Developments, utilization and applications of nanobiosensors for environmental sustainability and safety -- 14.1 Introduction -- 14.2 Overview on the mechanisms of biosensors -- 14.2.1 Components and mechanism of action of biosensors -- 14.2.2 Categories of biosensors -- 14.3 Developments of NNBs mechanisms for ESS -- 14.4 Utilization and applications of NNBs mechanisms for ESS -- 14.5 Conclusion and future prospects of NNBs mechanisms for ESS -- Acknowledgement -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Environmental monitoring-Equipment and supplies. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (469 pages)
    Edition: 1st ed.
    ISBN: 9783031161063
    DDC: 363.70630284
    Language: English
    Note: Intro -- Preface -- Acknowledgments -- Contents -- Editors and Contributors -- 1 Introduction to Nanobiosensors -- 1.1 Introduction -- 1.2 Types of Nanobiosensors -- 1.3 Properties and Fabrication of Nanobiosensors -- 1.4 Potentialities of Nanobiosensors in the Environment Domain -- 1.5 Miscellaneous Applications of Nanobiosensors -- 1.5.1 Agricultural -- 1.5.2 Biomedical -- 1.5.3 Food Safety and Monitoring Applications -- 1.6 Recent Trends and Limitations -- 1.7 Conclusion -- References -- 2 Classification, Properties, and Fabrication Techniques of Nanobiosensors -- 2.1 Introduction -- 2.2 Classification of Nanobiosensors -- 2.2.1 Classification Based on Transducer -- 2.2.2 Based on Bioreceptors -- 2.3 Properties of Nanobiosensors -- 2.4 Fabrication of Nanobiosensors -- 2.4.1 Physical Fabrication -- 2.4.2 Chemical Fabrication -- 2.4.3 Surface Modifications -- 2.5 Challenges and Future Perspectives -- 2.6 Conclusion -- References -- 3 Nanobiosensors' Potentialities for Environmental Monitoring -- 3.1 Introduction -- 3.2 Types of Nanobiosensors -- 3.2.1 NPs-Based Biosensors (NPBS) -- 3.2.2 NTs-Based Sensors (NTBS) -- 3.2.3 NWs-Based Sensors (NWBSs) -- 3.2.4 QDs-Based Sensors (QDNSs) -- 3.3 Nanobiosensors for Detection of Environmental Pathogens -- 3.3.1 Viruses -- 3.3.2 Fungus -- 3.3.3 Bacteria -- 3.4 Nanobiosensors for the Detection of Heavy Metals -- 3.5 Nanobiosensor for Detection of Soil and Air Contaminants -- 3.5.1 Soil Contaminants -- 3.5.2 Air Contaminants -- 3.6 Conclusion and Prospects -- References -- 4 Utilization of Nanobiosensors for Wastewater Management -- 4.1 Introduction -- 4.2 Nanobiosensors -- 4.3 Nanomaterials for Wastewater Treatment -- 4.4 Application and Importance of Nanobiosensors for Wastewater Treatment -- 4.5 Conclusion -- References -- 5 Nanobiosensors for Environmental Risk Assessment and Management. , 5.1 Introduction -- 5.2 Environmental Risk Assessment -- 5.3 Nanobiosensors for Environmental Risk Assesment and Management -- 5.3.1 Hazard Identification -- 5.3.2 Risk Assessment and Evaluation -- 5.3.3 Risk Management and Communication -- 5.3.4 Monitoring and Feedback -- 5.4 Conclusion -- 5.5 Future Remarks -- References -- 6 Challenges and Scope in Nanobiosensors Utilization for Environmental Monitoring -- 6.1 Introduction -- 6.2 Importance of Nanobiosensors for Environmental Monitoring -- 6.3 Scope of Nanobiosensor in Environmental Monitoring -- 6.3.1 Detection of Heavy Metals -- 6.3.2 Detection of Microorganism -- 6.4 Nanobiosensors in Health Care -- 6.4.1 Nanobiosensors for Detection of Food- and Water-Borne Microorganisms -- 6.4.2 Nanobiosensors for Detection of Microbial Toxins -- 6.4.3 Nanobiosensors for Detection of Viruses -- 6.4.4 Nanobiosensors for Detection of Pesticide -- 6.5 Nanobiosensors for Environment Safety and Security -- 6.6 Conclusion -- References -- 7 Role and Significance of Nanobiosensors for Environmental Remediation -- 7.1 Introduction -- 7.2 Role and Significance of Nanobiosensors for Environmental Monitoring -- 7.3 Nanobiosensors for Environmental Remediation -- 7.3.1 Fertilizer Residues -- 7.3.2 Pesticide Detection -- 7.3.3 Heavy Metal Detection -- 7.3.4 Detection of Escherichia Coli -- 7.4 Conclusion and Outlook -- References -- 8 Bioluminescence Sensors for Environmental Monitoring -- 8.1 Introduction -- 8.1.1 Proper Organism-Application and Choice -- 8.1.2 Medicinal Plant-Cultivation Environment Monitoring -- 8.1.3 Infectious Disease Detection-Biosensor -- 8.1.4 Bacteria as Biosensors -- 8.2 The Principle of Bacterial Bioluminescent Biosensor -- 8.3 Aptamers -- 8.4 Heavy Metals -- 8.4.1 Arsenic -- 8.4.2 Lead -- 8.4.3 Silver (Ag) -- 8.5 Soil Contaminants-Aptamer. , 8.5.1 Using Aptamer-Based Biosensors for Monitoring Lead in Soil -- 8.5.2 Agricultural Toxins Detection Present in Soil -- 8.6 Aptamers for Monitoring Air Quality -- 8.7 Bacterial Detection Aptamer-Based Biosensors -- 8.7.1 Listeria Monocytogenes -- 8.7.2 Vibrio Species -- 8.8 Applications of Bioluminescent Biosensors -- 8.8.1 Detection of Environmental Contaminants -- 8.8.2 Applications in the Food Industry -- 8.8.3 Bio Drug Delivery Systems -- 8.9 Perspectives and Recommendations -- 8.10 Conclusion -- References -- 9 Microbial and Plant Cell Biosensors for Environmental Monitoring -- 9.1 Introduction -- 9.2 Types of Biosensors -- 9.2.1 Gold Nanorods (GNRs-DNA) DNA Biosensors -- 9.2.2 Enzyme-Linked Immunosorbent Assay (ELISA) -- 9.2.3 Quartz Crystal Microbalance (QCM) Biosensor -- 9.2.4 Microbial Biosensors -- 9.3 The Environmental Application of Genetic/Protein Engineering and Synthetic Biology in the Development of Microbial Biosensor -- 9.4 Environmental Application of Biosensor -- 9.5 The Application of Plant Cell Biosensors for Environmental Monitoring -- 9.6 Application of Plant as a Biosensor of Pollutants in the Environment and Monitoring of Pollutants -- 9.7 Current Research Trends, Future Challenges, and Limitations of Biosensor Technology -- 9.8 Conclusion and Future Recommendation -- References -- 10 Biomimetic Material-Based Biosensor for Environmental Monitoring -- 10.1 Introduction -- 10.2 Biomimetic -- 10.3 Biomimetic Nanobiosensors -- 10.4 Pathogen Microorganisms -- 10.5 Butterfly Wings -- 10.6 Bioelectronic Nose -- 10.7 Nanoenzymes -- 10.8 Conclusion -- References -- 11 Chemiluminescence Sensors for Environmental Monitoring -- 11.1 Introduction -- 11.2 Instrumentation for CL Sensors -- 11.2.1 Light-Detection -- 11.2.2 Flow Injection Technique -- 11.3 Applications -- 11.3.1 Determination of the Analytes in the Air/Vapor. , 11.3.2 Chemiluminescence-Based Sensors on Metal Ions and Non-metal Ions -- 11.3.3 Determination of the Analytes in the Liquid -- 11.4 Chemiluminescence for Reactive-Oxygen Species Sensing and Imaging Analysis -- 11.5 Conclusions and Prospects -- References -- 12 Nanobiosensor for Mycotoxin Detection in Foodstuff -- 12.1 Introduction -- 12.2 Categories of Mycotoxins -- 12.2.1 Fumonisins -- 12.2.2 Aflatoxins -- 12.2.3 Ochratoxins -- 12.2.4 Trichothecenes -- 12.2.5 Zearalenone -- 12.3 Orthodox Techniques for Mycotoxin Identification -- 12.3.1 Chromatographic-Based Methods -- 12.3.2 Immunochemical-Based Methods -- 12.3.3 Microarrays -- 12.4 Biosensors for the Recognition of Mycotoxins -- 12.5 Principle of Operational Manual of Nanomaterial in Nanobiosensors -- 12.6 Versatility of Nanomaterials in Mycotoxin Detection -- 12.7 Sensing Performance of Nanobiosensors for Mycotoxin Detection -- 12.8 Nanobiosensors for the Recognition of Mycotoxins -- 12.9 Benefits and Challenges Associated with Detection of Mycotoxin by Using Nanobiosensors -- 12.10 Conclusion and Future Aspects -- References -- 13 Current Existing Techniques for Environmental Monitoring -- 13.1 Introduction -- 13.2 Carbon Nanotubes (CNTs) -- 13.3 Functionalization -- 13.4 CNTs-Based Biosensors for HMI Sensing -- 13.4.1 Optical Biosensors -- 13.4.2 Field-Effect Transistor (FET) Biosensors -- 13.4.3 Electrochemical Biosensors -- 13.5 Applications of CNT-Based Sensors in Gas Sensing -- 13.5.1 CNT-Based Gas Sensors -- 13.5.2 Photosensors for Gas Sensing -- 13.5.3 FET Sensors for Gas Sensing -- 13.5.4 Pressure Sensors for Gas Sensing -- 13.6 Conclusion -- References -- 14 Molecularly Imprinted Polymers-Based Nanobiosensors for Environmental Monitoring and Analysis -- 14.1 Introduction -- 14.2 Molecularly Imprinted Polymers. , 14.3 Application of MIP-Based Nanobiosensors for Environmental Monitoring and Analysis -- 14.3.1 Pesticide Detection -- 14.3.2 Pharmaceutical Product Detection -- 14.3.3 Heavy Metals Detection -- 14.4 Conclusion and Future Perspective -- References -- 15 Plasmonic Nanoparticles for Naked-Eye Detection of Environmental Pollutants -- 15.1 Introduction -- 15.2 Colorimetry-Based Plasmonic Nanoparticles -- 15.3 Plasmonic Nanoparticles -- 15.4 Noble Metal Nanomaterials -- 15.5 Plasmonic Nanoparticle-Based Naked-Eye Colorimetry Method -- 15.6 The Applications of the Plasmonic Nanoparticles in the Environmental Pollutant's Detection -- 15.6.1 Toxic Heavy Metal -- 15.6.2 Organo-Phosphate Pesticides -- 15.6.3 Aromatic Compounds -- 15.6.4 Other Pollutant Compounds -- 15.7 Conclusions and Future Outlooks -- References -- 16 Utility of Nano Biosensors for Heavy Metal Contamination Detection in the Environment -- 16.1 Introduction -- 16.2 Statistical Prevalence and Epidemiology of Heavy Metal Ion Contamination -- 16.3 Traditional Approaches for Arsenic (As) Monitoring in Water -- 16.3.1 Standard UV-Visible Technique -- 16.3.2 Mass Spectroscopic Techniques -- 16.3.3 Chromatographic Techniques -- 16.4 Current Approaches for Monitoring of Arsenic -- 16.4.1 Microbial Fuel Cell (MFC) Based Biosensor -- 16.4.2 Transducer Based Biosensors for Heavy Metal Detection -- 16.5 Commercially Available Sensors for Arsenic Detection -- 16.6 Conclusion and Future Prospect -- References -- 17 Nanobiosensors and Industrial Wastewater Treatments -- 17.1 Introduction -- 17.2 Nanomaterials for Wastewater Treatment -- 17.2.1 Nano Adsorption and Remediation -- 17.2.2 Membrane Filtration -- 17.2.3 Nanobiosensing and Monitoring -- 17.3 Industrial Wastewater Treatment -- 17.3.1 Based on Bio-recognition Elements -- 17.3.2 Based on the Type of Nanomaterial. , 17.3.3 Applications of Nanobiosensors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: Environmental monitoring. ; Chemical detectors. ; Environmental chemistry. ; Environmental engineering. ; Biotechnology. ; Bioremediation. ; Environmental management.
    Description / Table of Contents: Chapter 1. Introduction to Nanobiosensors -- Chapter 2. Classification, properties, and fabrication techniques of nanobiosensors -- Chapter 3. Nanobiosensors potentialities for environmental monitoring -- Chapter 4. Utilization of nanobiosensors for wastewater management -- Chapter 5. Nanobiosensors for Environmental Risk Assessment and Management -- Chapter 6. Challenges and Scope in Nanobiosensors Utilization for Environmental Monitoring -- Chapter 7. Role and Significance of Nanobiosensors for Environmental Remediation -- Chapter 8. Bioluminescence Sensors for Environmental Monitoring -- Chapter 9. Microbial and plant cell biosensors for environmental monitoring -- Chapter 10. Biomimetic material based biosensor for environmental monitoring -- Chapter 11. Chemiluminescence sensors for environmental monitoring -- Chapter 12. Nanobiosensor for mycotoxin detection in foodstuff -- Chapter 13. Current Existing Techniques for Environmental Monitoring -- Chapter 14. Molecularly imprinted polymers-based nano-biosensors for environmental monitoring and analysis -- Chapter 15. Plasmonic nanoparticles for naked-eye detection of environmental pollutants -- Chapter 16. Utility of nanobiosensors for heavy metal contamination detection in the environment -- Chapter 17. Nanobiosensors and Industrial Wastewater Treatments -- Chapter 18. Nanobiosensors potentialities for monitoring SARS-CoV-2 in the environment -- Chapter 19. Recent trends in rapid environmental monitoring of toxicants using nanobiosensors -- Chapter 20. Ecotoxicology of nanomaterials: a sensor perspective -- Chapter 21. Legal Implications of Nanobiosensors Concerning Environmental Monitoring.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(XXV, 458 p. 78 illus., 71 illus. in color.)
    Edition: 1st ed. 2022.
    ISBN: 9783031161063
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Water. ; Hydrology. ; Refuse and refuse disposal. ; Environmental management. ; Pollution. ; Renewable energy sources.
    Description / Table of Contents: Chapter 1. Sustainable utilization of wastewater: an overview -- Chapter 2. Productions of Bioenergy from Wastewater -- Chapter 3. Production of Biogas from wastewater -- Chapter 4. Various treatment technology for generation of Biogas -- Chapter 5. Biohydrogen production from wastewater -- Chapter 6. Various treatment technologies for the generation of biohydrogen from sludge and wastewater -- Chapter 7. Lipid biomass to Biodiesel -- Chapter 8. Biopolymers from wastewater -- Chapter 9. Recovery of nutrients from wastewater -- Chapter 10. Recovery of various metals from wastewater -- Chapter 11. Resource recovery from wastewater -- 12. Biofertilizers from wastewater -- Chapter 13. Microbial fuel cell and wastewater treatment -- Chapter 14. Various applications of Sludge as resources -- Chapter 15. Future research on the sustainable utilization of wastewater as resources -- Chapter 16. Aerobic treatment of high-strength ammonium wastewater-nitrogen removal via nitrate -- Chapter 17. Thermophilic aerobic biological wastewater treatment -- Chapter 18. Aerobic treatment of winery wastewater using jet-loop activated sludge reactor -- Chapter 19. Advancements in the application of aerobic granular biomass technology for sustainable treatment of wastewater.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(VI, 386 p. 47 illus., 42 illus. in color.)
    Edition: 1st ed. 2023.
    ISBN: 9783031401985
    Series Statement: Springer Water
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Sustainability. ; Renewable energy sources. ; Power resources. ; Environmental economics. ; Economic development.
    Description / Table of Contents: Chapter 1. Circular economy aspirations: Three strategies in search of a direction -- Chapter 2. The environment value system and green circular economy -- Chapter 3. Circular economy and sustainable production and consumption -- Chapter 4. Green human resource management and circular economy -- Chapter 5. Economies of scale in green circular economies -- Chapter 6. Temporal study of the interrelationship between economics and environmental degradation -- Chapter 7. Cities as emerging centers in a circular economy: An assessment of Indian cities -- Chapter 8. Trade and management of waste -- Chapter 9. Carbon emission from liquid fuel and pollution haven hypothesis -- Chapter 10. The development practice and reform optimization path of green circular economy in Erhai Lake of China -- Chapter 11. Recent trends in biohydrogen economy: Challenges and future perspectives -- Chapter 12. Strategic planning and business sustainability in agribusiness: Analysis in a model farm in Brazil -- Chapter 13. Application of industrial ecology principles in and around cement industry in NCR of Delhi: Potentials, problems and possibilities -- Chapter 14. Challenges and recommendations for a green circular economy.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(VI, 304 p. 1 illus.)
    Edition: 1st ed. 2023.
    ISBN: 9783031403040
    Series Statement: Circular Economy and Sustainability
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...