GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
  • 1
    Online Resource
    Online Resource
    Newark :American Geophysical Union,
    Keywords: Geochemistry. ; Isotope geology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (355 pages)
    Edition: 1st ed.
    ISBN: 9781119594963
    Series Statement: Geophysical Monograph Series
    DDC: 551.9
    Language: English
    Note: Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- About the Companion Website -- Dedication -- Part I High-Temperature/Deep Earth Processes -- Chapter 1 High-Temperature Kinetic Isotope Fractionation of Silicate Materials -- 1.1. Introduction -- 1.2. Diffusion in Multi-Component Condensed Systems: Theory and Definitions -- 1.2.1. Fick's Laws and the Diffusion Matrix -- 1.2.2. Effective Binary Diffusion Coefficients -- 1.2.3. Self-Diffusion Coefficients -- 1.2.4. Thermal (Soret) Diffusion Coefficients -- 1.3. Kinetic Isotope Fractionation During Diffusion Between Natural Melts -- 1.3.1. Laboratory Experiments Documenting Ca Isotope Fractionation by Diffusion Between Molten Rhyolite and Basalt -- 1.3.2. Isotope Fractionation between Melts from a Natural Setting -- 1.4. Isotope Fractionation by Soret Diffusion -- 1.4.1. The Soret Coefficient -- 1.4.2. Soret Isotope Fractionation in Silicate Liquids -- 1.5. Isotope Fractionation by Diffusion in Silicate Minerals -- 1.5.1. Experiments documenting Lithium Isotopic Fractionation by Diffusion in Pyroxene -- 1.5.2. Natural Examples of Lithium Zoning and Isotopic Fractionation by Diffusion in Pyroxenes -- 1.5.3. Lithium Isotopic Fractionation by Diffusion in Olivine -- 1.5.4. Fe-Mg zoning and Fe and Mg Isotopic Fractionation in Olivine -- 1.6. Isotope Fractionation by Evaporation from Silicate Melts -- 1.6.1. The Hertz-Knudsen Evaporation Equation -- 1.6.2. Rayleigh Fractionation -- 1.6.3. High-Temperature Vacuum Evaporation Experiments -- 1.6.4. Evidence of Evaporation in Natural CAIs from Chondritic Meteorites -- 1.7. Summary -- 1.8. Thoughts on Further Research -- References -- Chapter 2 Ca and K Isotope Fractionation by Diffusion in Molten Silicates: Large Concentration Gradients Are Not Required to Induce Large Diffusive Isotope Effects -- 2.1. Introduction. , 2.2. Methods -- 2.2.1. Experiments -- 2.2.2. Electron Microprobe Analyses -- 2.2.3. Ca Isotopic Measurements -- 2.2.4. K Isotopic Measurements -- 2.3. Results -- 2.3.1. Major Element Diffusion Profiles -- 2.3.2. Ca and K Isotopes -- 2.4. Discussion -- 2.5. Modeling -- 2.5.1. General Multicomponent Diffusion -- 2.5.2. The Zhang (1993) Modified Effective Binary Diffusion Model -- 2.5.3. Comparison to Previous Studies -- 2.6. Conclusions and Possible Future Applications -- Appendix Linear versus exponential dependence of activity on SiO2 -- Acknowledgments -- References -- Chapter 3 Calcium Isotope Constraints on Recycled Carbonates in Subduction-Related Magmas -- 3.1. Introduction -- 3.2. Analytical Methods and Samples -- 3.2.1. Double-spike Thermal Ionization Mass Spectrometry Calcium Isotope Measurements -- 3.2.2. Igneous Samples Characterized for Calcium Isotope Composition -- 3.3. Results -- 3.4. Discussion -- 3.4.1. Calcium Isotopic Record of Marine Carbonates -- 3.4.2. Calcium Isotopic Record of Mantle-Derived Rocks -- 3.4.3. Calcium Isotopes Exhibit no Evidence for Carbonate Sediment Recycling at Subduction Zones -- 3.4.4. Mantle Source(s) of Calcium in Carbonatite Magmas -- 3.4.5. Origin of the Light Calcium Isotope Composition of Laacher See and other Intrusive Carbonatites -- 3.5. Conclusions -- Acknowledgments -- References -- Chapter 4 Reassessing the Role of Continental Lithospheric Mantle in Cenozoic Magmatism, Southwestern North America -- 4.1. Introduction -- 4.2. Geologic Background & -- General Terminology -- 4.2.1. Cenozoic Geologic History of SWNA -- 4.2.2. Definition of Continental Lithospheric Mantle -- 4.3. Methods/Data -- 4.4. Results -- 4.5. Discussion -- 4.5.1. Do Nd Isotope Data Support a CLM Source for Mafic Volcanic Rocks in SWNA? -- 4.5.2. Isotopic Composition of CLM from Xenolith Studies. , 4.5.3. Cenozoic Metasomatism of CLM -- 4.5.4. Physical Evolution of Deep Lithosphere -- 4.6. Conclusions -- Acknowledgments -- References -- Chapter 5 Rhyolite Ignimbrite Generation in the Northern Andes: The Chalupas Caldera, Ecuador -- 5.1. Introduction -- 5.2. Geological Setting and Age of the Chalupas Caldera -- 5.3. Geochemical Results -- 5.3.1. Analytical Techniques -- 5.3.2. Major Element Geochemistry -- 5.3.3. Trace Element Geochemistry -- 5.3.4. Isotope Geochemistry -- 5.3.5. Metamorphic Basement Rocks of the Eastern Cordillera -- 5.4. Evolution of the Chalupas Magmatic System -- 5.4.1. Role of Fractional Crystallization -- 5.4.2. The Role of Crustal Assimilation -- 5.4.3. Modeling Results -- 5.4.4. Model Discussion -- 5.4.5. Assimilation and Crustal Thickness -- 5.5. Crustal Structure, Magma Supply, and Transport -- 5.5.1. Crustal and Magma Density -- 5.5.2. Temperature Considerations -- 5.5.3. Subduction Zone Magma Supply and Magmatic Timescales -- 5.5.4. Timescales of Transport and Assimilation -- 5.6. Chalupas Eruption Volume and Magma Supply -- 5.7. Summary and Conclusions -- Appendix 5A Ar-Ar Geochronology -- Pre-Caldera Lavas -- Chalupas Ignimbrite -- Post-Caldera Lavas -- Summary of Age Data -- Appendix 5B Mineral Chemistry and Petrographic Descriptions -- 5B.1. Pre-Caldera Lavas -- 5B.2. Post-Caldera Lavas -- 5B.3.Chalupas Ignimbrite -- 5B.4. Lithics from the Chalupas Ignimbrite -- Appendix 5C Models for Crystal Fractionation, Assimilation-Fractional Crystallization, and Magma Fluxes -- 5C.1. Quantitative Estimation of Crystal Fractionation Effects -- 5C.2. Assimilation-Fractional Crystallization (AFC) Model Details -- 5C.3. Relationship between f and Crustal Fraction (fc) in the AFC Model -- 5C.4. Magma Supply Considerations -- 5C.5. Magma Supply Requirements -- 5C.6. Diapir Formation and Transport through the Lower and Mid-Crust. , ACKNOWLEDGMENTS -- REFERENCES -- Chapter 6 Xenolith Constraints on "Self-Assimilation" and the Origin of Low 18O Values in Mauna Kea Basalts -- 6.1. Introduction -- 6.2. Samples and Analytical Methods -- 6.2.1. EPMA Analysis of Mineral Major Element Composition -- 6.2.2. Clinopyroxene Trace Element Analysis by LA-ICP-MS -- 6.2.3. Oxygen Isotope Analysis by Laser Fluorination Gas Source Mass Spectrometry -- 6.2.4. Strontium-Nd-Pb Isotope Analysis by TIMS and MC-ICP-MS -- 6.3. Results -- 6.4. Discussion -- 6.4.1. Constraints on Parental Melts of Mauna Kea Xenoliths -- 6.4.2. Constraints on The P-T Conditions Of Xenolith Formation and Later Re-Equilibration -- 6.4.3. Role of Pacific Crust Assimilation and Edifice Self-Assimilation -- 6.4.4. Oxygen Isotope Compositional Variability in the Hawaiian Plume? -- 6.4.5. Significance of Self-Assimilation for Interpretation of Geochemical Signatures in Hawaiian Basalts -- 6.5. Conclusions -- Acknowledgments -- References -- Chapter 7 Monitoring Volcanic Activity Through Combined Measurements of CO2 Efflux and (222Rn) and (220Rn) in Soil Gas: An Application to Mount Etna, Italy -- 7.1. Introduction -- 7.2. Background -- 7.2.1. Mt. Etna Volcanic Activity During 2006 to 2009 -- 7.2.2. Prior Work Utilizing Coupled 220Rn/222Rn and CO2 Efflux Measurements on Mt. Etna -- 7.3. Sampling Strategy and Analytical Methods -- 7.3.1. Sampling Strategy -- 7.3.2. Soil 222Rn and 220Rn Measurements -- 7.3.3. Soil CO2 Concentration and Efflux Measurements -- 7.3.4. Carbon Isotope Measurements -- 7.4. Synopsis of This Study's Results -- 7.4.1. Coupled CO2 Efflux and (220Rn/222Rn) -- 7.4.2. Carbon Isotopes -- 7.5. The Soil Gas Disequilibrium Index (SGDI) -- 7.6. Relationship Between Filtered SGDI Data and Volcanic Activity of Mt. Etna -- 7.6.1. Modelling -- 7.6.2. Comparison of SGDI to Other Monitoring Proxies -- 7.7. Summary. , Appendix Statistical Treatment of SGDI Data -- Cluster Analysis and Spatial Distributions -- Analysis of SGDI Time Series -- Definition of Anomalies in the SGDI Time Series -- Acknowledgments -- References -- Part II Low-Temperature/Shallow Earth Processes -- Chapter 8 The Carbon Isotope Record and Earth Surface Oxygenation -- 8.1. Introduction -- 8.2. The Carbon Isotope Budget -- 8.3. forg and the Oxygen Budget -- 8.4. Oxygen Sinks in a Low-Oxygen World -- 8.4.1. Carbon as a Precambrian Oxygen Sink -- 8.4.2. Sulfur as a Precambrian Oxygen Sink -- 8.4.3. Iron as a Precambrian Oxygen Sink -- 8.4.4. Other Precambrian Oxygen Sinks -- 8.5. Resolving the pO2 - forg Paradox -- 8.6. Predictions of the Authigenic Feedback Hypothesis -- 8.7. Conclusions -- References -- Chapter 9 Detrital Garnet Geochronology: A New Window into Ancient Tectonics and Sedimentary Provenance -- 9.1. Introduction and Motivation -- 9.2. Theoretical Feasibility of Detrital Garnet Geochronology -- 9.2.1. Age Precision vs. Single Garnet Grain Diameter -- 9.2.2. Age Accuracy: Blanks -- 9.2.3. Age Accuracy: Second Point on the Isochron -- 9.3. Detailed Methodology -- 9.3.1. Sample Processing Prior to Chemical Analysis -- 9.3.2. Partial Dissolution: Leaching out the Inclusions -- 9.3.3. Full Dissolution of Pure Garnet Residue -- 9.3.4. Column Chemistry -- 9.3.5. Thermal Ionization Mass Spectroscopy -- 9.3.6. Blank Correction -- 9.3.7. Age Determination -- 9.4. Case Studies -- 9.4.1. Preliminary Work: Multi-Grain Detrital Garnet Ages in Beach Sand from Hampton Beach, New Hampshire -- 9.4.2. Bulk vs. Detrital Garnet Methodology Test: Townshend Dam, Vermont -- 9.4.3. Single-Grain Detrital Garnet Ages in Stream Alluvium: Townshend Dam, Vermont -- 9.4.4. Single-Grain Detrital Garnet in Stream Alluvium: Southern Appalachians -- 9.4.5. Dating Detrital Garnet in Sedimentary Rocks: Scotland. , 9.5. Conclusion.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-30
    Description: Here we present zircon petrochronological data, tephra whole-rock/glass compositions, and amphibole thermobarometry comprising the last four explosive eruptions of Ilopango Caldera in El Salvador (Tierra Blanca eruptive suite, TB). Our datasets include 238U-230Th disequilibrium geochronology, trace-elements, and oxygen isotope compositions from polished and unpolished zircon crystals analyzed using a CAMECA IMS 1280-HR secondary ion mass spectrometer (SIMS) at Heidelberg University, Germany. Additionally, pumice clasts whole-rock chemical analyses from the TB suite were performed at the German Research Centre for Geosciences (GFZ) using a PANalytical AXIOS Advanced wavelength-dispersive spectrometer, whereas major and trace-elements, glass shard, and mineral compositions were collected using an electron microprobe analysis (EMPA) at GEOMAR - Helmholtz-Centre for Ocean Research Kiel and by Laser Ablation Inductively Coupled Plasma - Mass Spectrometry (LA-ICP-MS) at Institute of Earth Sciences, Academia Sinica in Taipei. Whole-rock Sr-Nd isotope determinations were carried out at Departamento de Geología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE; Mexico) with a Nu-Instruments thermal ionization mass spectrometer (Nu-TIMS), whereas whole-rock U-series were determined using a ThermoFisher Neptune inductively-coupled mass-spectrometer multi-collector (ICP-MS-MC) at the University of Wyoming (UWYO, USA).
    Keywords: Central America; E009; E012; E014; E015; E017; E021; E023; E044; E047; E053; Geochemistry; geochronology; GLASS; ROCK; Rock sample; TB_E020; TB_E021; TB_E022; TB_E029; TB_E032; TB_E033; TB_E035; TB_E038; TB_E039; TB_E040; TB_E042; TB_E043; TB_E044; TB_E078; TB_E079; TB_E084; zircon
    Type: Dataset
    Format: application/zip, 8 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-01-30
    Description: This dataset includes results from oxygen isotope compositions from zircon crystal interiors (polished sections) of the Tierra Blanca Joven (TBJ) eruption from Ilopango caldera in El Salvador. Zircon crystals were analyzed employing Secondary Ion Mass Spectrometry at Heidelberg University.
    Keywords: Central America; Comment; Domain, mineralogy; Geochemistry; geochronology; GLASS; ROCK; Rock sample; Sample code/label; TB_E17-32; zircon; δ18O; δ18O, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 264 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-01-30
    Description: This dataset includes results from U-Pb dating from zircon crystal interiors (polished sections) of the Tierra Blanca Joven eruption (TBJ) from Ilopango caldera in El Salvador. Zircon crystals were analyzed employing Secondary Ion Mass Spectrometry at Heidelberg University.
    Keywords: Age, dated; Age, dated standard error; Central America; Comment; Correlation; Domain, mineralogy; Geochemistry; geochronology; GLASS; Lead-204/Lead-206, standard error; Lead-204/Lead-206 ratio; Lead-207/Lead-206, standard error; Lead-207/Lead-206 ratio; Lead-208/Lead-206 ratio; Lead-208/Lead-206 ratio, standard error; ROCK; Rock sample; Sample code/label; TB_E17-32; Thorium/Uranium ratio; Uranium; Uranium-238/Lead-206, standard error; Uranium-238/Lead-206 ratio; zircon
    Type: Dataset
    Format: text/tab-separated-values, 473 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-12
    Description: This dataset includes results from U-Th disequilibria dating from zircon rims (outermost crystal face) and crystal interiors (polished crystals) of the last four explosive silicic eruptions from Ilopango caldera in El Salvador (TBJ, TB2, TB3, and TB4). Zircon crystals were analyzed employing Secondary Ion Mass Spectrometry at Heidelberg University.
    Keywords: Age, dated; Age, dated, error to older; Age, dated, error to younger; Central America; Comment; Domain, mineralogy; Event label; Geochemistry; geochronology; GLASS; ROCK; Rock sample; Sample code/label; Sample type; TB_E17-1; TB_E17-17; TB_E17-32; TB_E17-4; Thorium-230/Thorium-232 activity ratio; Thorium-230/Thorium-232 activity ratio, standard error; Uranium; Uranium-238/Thorium-232 activity ratio; Uranium-238/Thorium-232 activity ratio, standard error; zircon; Zircon-melt model isochron slope; Zircon-melt model isochron slope, standard error
    Type: Dataset
    Format: text/tab-separated-values, 3144 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-12
    Description: This dataset includes results from trace element concentrations from zircon rims (outermost crystal face) and crystal interiors (polished sections) of the last four explosive silicic eruptions from Ilopango caldera (TBJ, TB2, TB3, and TB4) in El Salvador. Zircon crystals were analyzed employing Secondary Ion Mass Spectrometry at Heidelberg University.
    Keywords: Age, dated; Age, dated, error to older; Age, dated, error to younger; Age, dated standard error; Central America; Cerium; Cerium, standard error; Comment; Domain, mineralogy; Dysprosium; Dysprosium, standard error; Erbium; Erbium, standard error; Europium; Europium, standard error; Europium anomaly; Europium anomaly, standard error; Event label; Gadolinium; Gadolinium, standard error; Geochemistry; geochronology; GLASS; Hafnium; Hafnium, standard error; Holmium; Holmium, standard error; Iron; Iron, standard error; Lanthanum; Lanthanum, standard error; Light rare-earth elements index; Lutetium; Lutetium, standard error; Magnesium; Magnesium, standard error; Manganese; Manganese, standard error; Neodymium; Neodymium, standard error; Phosphorus; Phosphorus, standard error; Praseodymium; Praseodymium, standard error; ROCK; Rock sample; Samarium; Samarium, standard error; Sample code/label; Sample type; TB_E17-1; TB_E17-17; TB_E17-32; TB_E17-4; Terbium; Terbium, standard error; Thorium; Thorium, standard error; Thorium/Uranium, standard error; Thorium/Uranium ratio; Thulium; Thulium, standard error; Ti-in-zircon temperature, calculated; Ti-in-zircon temperature, calculated, error; Titanium; Titanium, standard error; Uranium; Uranium, standard error; Ytterbium; Ytterbium, standard error; Ytterbium/Dysprosium, standard error; Ytterbium/Dysprosium ratio; Yttrium; Yttrium, standard error; zircon; Zirconium/Hafnium, standard error; Zirconium/Hafnium ratio; δ18O; δ18O, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 11956 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-12
    Description: This dataset includes results from U-series and Sr-Nd whole-rock isotope compositions of the last four explosive silicic eruptions from Ilopango caldera in El Salvador (TBJ, TB2, TB3, and TB4). Sr and Nd isotope ratios were measured with a Nu Instruments thermal ionization mass spectrometer (Nu-TIMS) at Departamento de Geología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE) in the state of Baja California (Mexico), whereas U and Th concentrations and isotopes were measured at University of Wyoming (UWYO) were measured by isotope dilution using a ThermoFisher Neptune ICP-MS multicollector.
    Keywords: Age, dated; Central America; Event label; Geochemistry; geochronology; GLASS; Neodymium-144/Neodymium-143; Neodymium-144/Neodymium-143, standard error; Replicate; ROCK; Rock sample; Sample code/label; Strontium-87/Strontium-86 ratio; Strontium-87/Strontium-86 ratio, standard error; TB_E17-1; TB_E17-17; TB_E17-32; TB_E17-4; Thorium; Thorium, standard error; Thorium-230/Thorium-232 activity ratio; Thorium-230/Thorium-232 activity ratio, standard error; Thorium-230/Uranium-238 activity ratio; Thorium-230/Uranium-238 activity ratio, standard error; Type; Unit; Uranium; Uranium, standard error; Uranium/Thorium, standard error; Uranium/Thorium ratio; Uranium-234/Uranium-238 activity ratio; Uranium-234/Uranium-238 activity ratio, standard error; Uranium-238/Thorium-232 activity ratio; Uranium-238/Thorium-232 activity ratio, standard error; zircon
    Type: Dataset
    Format: text/tab-separated-values, 139 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-02-12
    Description: This dataset includes results from amphibole geothermobarometry of explosive silicic eruptions from Ilopango caldera in El Salvador (TBJ, TB2, TB3, and TB4). Amphibole compositions were analyzed employing a JEOL JXA 8200 wavelength dispersive microprobe at the GEOMAR - Helmholtz-Centre for Ocean Research Kiel.
    Keywords: Aluminium oxide; Calcium oxide; Central America; Chlorine; Chromium(III) oxide; Depth, continental, geothermobarometry; Depth, oceanic, geothermobarometry; E012; E014; Eruption; Event label; Fluorine; Fugacity of oxygen, logarithm; Fugacity of oxygen, logarithm, uncertainty; Fugacity of oxygen, relative; Geochemistry; geochronology; GLASS; Iron oxide, FeO; Magnesium oxide; Manganese oxide; Melt water content; Melt water content, uncertainty; Potassium oxide; Pressure, calculated; Pressure, calculated, uncertainty; ROCK; Rock sample; Sample code/label; Sample ID; Silicon dioxide; Sodium oxide; TB_E029; TB_E032; TB_E042; TB_E17-4; Temperature, calculated; Temperature, calculated, uncertainty; Titanium dioxide; Total; zircon
    Type: Dataset
    Format: text/tab-separated-values, 1956 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-07-10
    Description: This dataset includes results from X-ray fluorescence (XRF) analyses of the last four explosive silicic eruptions from Ilopango caldera in El Salvador (TBJ, TB2, TB3, and TB4). Samples were analyzed employing a PANalytical AXIOS Advanced wavelength-dispersive spectrometer.
    Keywords: Aluminium oxide; Antimony; Barium; Caesium; Calcium oxide; Carbon dioxide; Central America; Cerium; Chromium; Cobalt; Copper; Dysprosium; E009; E012; E014; E015; E017; E021; E023; E044; E047; E053; Erbium; Europium; Event label; Gadolinium; Gallium; Geochemistry; geochronology; GLASS; Hafnium; Holmium; Iron oxide, Fe2O3; Lanthanum; Latitude of event; Lead; Lithium; Longitude of event; Lutetium; Magnesium oxide; Manganese oxide; Molybdenum; Neodymium; Nickel; Niobium; Oxides, total; PANalytical AXIOS Advanced wavelength-dispersive spectrometer; Phosphorus pentoxide; Potassium oxide; Praseodymium; ROCK; Rock sample; Rubidium; Samarium; Sample code/label; Scandium; Silicon dioxide; Sodium oxide; Stratigraphy; Strontium; Tantalum; TB_E020; TB_E021; TB_E022; TB_E029; TB_E032; TB_E033; TB_E035; TB_E038; TB_E039; TB_E040; TB_E042; TB_E043; TB_E044; TB_E078; TB_E079; TB_E084; TB_E17-1; TB_E17-17; Terbium; Thallium; Thorium; Thulium; Tin; Titanium dioxide; Tungsten; Unit; Uranium; Vanadium; Water in rock; X-ray fluorescence (XRF); Ytterbium; Yttrium; Zinc; zircon; Zirconium
    Type: Dataset
    Format: text/tab-separated-values, 1043 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-07-10
    Description: This dataset includes results from glass major- and trace-element compositions of the last four explosive silicic eruptions from Ilopango caldera in El Salvador (TBJ, TB2, TB3, and TB4). Major elements in the glass shards were analyzed employing a JEOL JXA 8200 wavelength dispersive microprobe at the GEOMAR - Helmholtz-Centre for Ocean Research Kiel, whereas trace-elements were determined by Laser Ablation Inductively Coupled Plasma - Mass Spectrometry (LA-ICP-MS) at Institute of Earth Sciences, Academia Sinica in Taipei (Taiwan).
    Keywords: Aluminium oxide; Barium; Barium/Cerium ratio; Barium/Lanthanum ratio; Barium/Niobium ratio; Barium/Rubidium ratio; Barium/Thorium ratio; Barium/Zirconium ratio; Caesium; Calcium; Calcium oxide; Central America; Cerium; Cerium/Europium ratio; Cerium/Hafnium ratio; Cerium/Lead ratio; Cerium/Uranium ratio; Cerium/Ytterbium ratio; Chromium; Cobalt; Dysprosium; Dysprosium/Lutetium ratio; Erbium; Europium; Event label; Gadolinium; Geochemistry; geochronology; GLASS; Hafnium; Holmium; Iron oxide, FeO; Lanthanum; Lanthanum/Niobium ratio; Lanthanum/Samarium ratio; Lanthanum/Thorium ratio; Lanthanum/Ytterbium ratio; Lead; Lead/Neodymium ratio; Lithium; Lithium/Yttrium ratio; Lutetium; Lutetium/Hafnium ratio; Magnesium oxide; Manganese oxide; Neodymium; Niobium; Niobium/Rubidium ratio; Niobium/Tantalum ratio; Niobium/Thorium ratio; Niobium/Titanium ratio; Niobium/Uranium ratio; Niobium/Zirconium ratio; Oxides, total; Phosphorus pentoxide; Potassium/Lanthanum ratio; Potassium oxide; Potassium oxide and Sodium oxide; Praseodymium; ROCK; Rock sample; Rubidium; Rubidium/Caesium ratio; Rubidium/Hafnium ratio; Rubidium/Lanthanum ratio; Rubidium/Neodymium ratio; Rubidium/Strontium ratio; Rubidium/Thorium ratio; Samarium; Samarium/Neodymium ratio; Samarium/Ytterbium ratio; Samarium/Zirconium ratio; Sample code/label; Scandium; Silicon dioxide; Sodium oxide; Strontium; Strontium/Neodymium ratio; Tantalum; Tantalum/Uranium ratio; TB_E17-1; TB_E17-17; TB_E17-32; TB_E17-4; TB_TB4; Terbium; Texture; Thorium; Thorium/Tantalum ratio; Thulium; Titanium/Zirconium ratio; Titanium dioxide; Unit; Uranium; Uranium/Lanthanum ratio; Uranium/Lead ratio; Uranium/Thorium ratio; Ytterbium; Yttrium; zircon; Zirconium; Zirconium/Caesium ratio; Zirconium/Hafnium ratio; Zirconium/Niobium ratio
    Type: Dataset
    Format: text/tab-separated-values, 3699 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...