GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-10-29
    Description: Nature Genetics 47, 1352 (2015). doi:10.1038/ng.3403 Authors: Magdalena Zoledziewska, Carlo Sidore, Charleston W K Chiang, Serena Sanna, Antonella Mulas, Maristella Steri, Fabio Busonero, Joseph H Marcus, Michele Marongiu, Andrea Maschio, Diego Ortega Del Vecchyo, Matteo Floris, Antonella Meloni, Alessandro Delitala, Maria Pina Concas, Federico Murgia, Ginevra Biino, Simona Vaccargiu, Ramaiah Nagaraja, Kirk E Lohmueller, Nicholas J Timpson, Nicole Soranzo, Ioanna Tachmazidou, George Dedoussis, Eleftheria Zeggini, Sergio Uzzau, Chris Jones, Robert Lyons, Andrea Angius, Gonçalo R Abecasis, John Novembre, David Schlessinger & Francesco Cucca We report sequencing-based whole-genome association analyses to evaluate the impact of rare and founder variants on stature in 6,307 individuals on the island of Sardinia. We identify two variants with large effects. One variant, which introduces a stop codon in the GHR gene, is relatively frequent in Sardinia (0.87% versus 〈0.01% elsewhere) and in the homozygous state causes Laron syndrome involving short stature. We find that this variant reduces height in heterozygotes by an average of 4.2 cm (−0.64 s.d.). The other variant, in the imprinted KCNQ1 gene (minor allele frequency (MAF) = 7.7% in Sardinia versus 〈1% elsewhere) reduces height by an average of 1.83 cm (−0.31 s.d.) when maternally inherited. Additionally, polygenic scores indicate that known height-decreasing alleles are at systematically higher frequencies in Sardinians than would be expected by genetic drift. The findings are consistent with selection for shorter stature in Sardinia and a suggestive human example of the proposed 'island effect' reducing the size of large mammals.
    Print ISSN: 1061-4036
    Electronic ISSN: 1546-1718
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-05-01
    Description: Background: Next-Generation Sequencing methods have led to a great increase in phylogenetically useful markers within the male specific portion of the Y chromosome, but previous studies have limited themselves to the study of the X-degenerate regions. Methods: DNA was extracted from peripheral blood samples of adult males whose paternal grandfathers were born in Sardinia. The DNA samples were sequenced, genotyped and subsequently analysed for variant calling for approximately 23.1 Mbp of the Y chromosome. A phylogenetic tree was built using Network 4.6 software. Results: From low coverage whole genome sequencing of 1,194 Sardinian males, we extracted 20,155 phylogenetically informative single nucleotide polymorphisms from the whole euchromatic region, including the X-degenerate, X-transposed, and Ampliconic regions, along with variants in other unclassified chromosome intervals and in the readable sequences of the heterochromatic region. Conclusions: The non X-degenerate classes contain a significant portion of the phylogenetic variation of the whole chromosome and their inclusion in the analysis, almost doubling the number of informative polymorphisms, refining the known molecular phylogeny of the human Y chromosome.
    Electronic ISSN: 1756-0500
    Topics: Biology , Medicine
    Published by BioMed Central
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-11-30
    Description: Significant predictive skill for the mean winter North Atlantic Oscillation (NAO) and Arctic Oscillation (AO) has been recently reported for a number of different seasonal forecasting systems. These findings are important in exploring the predictability of the natural system, but they are also important from a socioeconomic point of view, since the ability to predict the wintertime atmospheric circulation anomalies over the North Atlantic well ahead in time will have significant benefits for North American and European countries. In contrast to the tropics, for the mid latitudes the predictive skill of many forecasting systems at the seasonal time scale has been shown to be low to moderate. The recent findings are promising in this regard, suggesting that better forecasts are possible, provided that key components of the climate system are initialized realistically and the coupled models are able to simulate adequately the dominant processes and teleconnections associated with low-frequency variability. It is shown that a multisystem approach has unprecedented high predictive skill for the NAO and AO, probably largely due to increasing the ensemble size and partly due to increasing model diversity. Predicting successfully the winter mean NAO does not ensure that the respective climate anomalies are also well predicted. The NAO has a strong impact on Europe and North America, yet it only explains part of the interannual and low-frequency variability over these areas. Here it is shown with a number of different diagnostics that the high predictive skill for the NAO/AO indeed translates to more accurate predictions of temperature, surface pressure, and precipitation in the areas of influence of this teleconnection.
    Description: Published
    Description: 1461-1475
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-07-14
    Description: Abstract Exploiting the added value of the ensemble of high-resolution model simulations provided by the Med- CORDEX coordinated initiative, an updated assessment of Mediterranean extreme precipitation events as represented in different observational, reanalysis and modelling datasets is presented. A spatiotemporal characterisation of the long-term statistics of extreme precipitation is performed, using a number of different diagnostic indices. Employing a novel approach based on the timing of extreme precipitation events a number of physically consistent subregions are defined. The comparison of different diagnostics over the Mediterranean domain and physically homogeneous sub-domains is presented and discussed, focussing on the relative impact of several model configuration features (resolution, coupling, physical parameterisations) on the performance in reproducing extreme precipitation events. It is found that the agreement between the observed and modelled long-term statistics of extreme precipitation is more sensitive to the model physics, in particular convective parameterisation, than to other model configurations such as resolution and coupling.
    Description: Published
    Description: 901-913
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Keywords: Extreme precipitation · Mediterranean climate · Regional climate modelling ; Mediterranean climate ·
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: In this study, two numerical simulations of the 20th Century climate performed with two global GCM are analysed, with the ultimate goal of isolating the impact of oceanic mesoscale features on the climate of the euro- mediterranean region, and its interannual variability. In the first experiment (L), a T159 atmosphere (equivalent to ∼80 Km horizontal resolution) is coupled to a 2x2- degree global ocean model, with a locally enhanced 0.5-degree resolution over the Mediterranean Sea region. In the second experiment (H), the same T159 atmosphere is coupled to a global ocean model regional high-resolution 1/16-degree (∼7 Km) ocean model for the Mediterranea Sea, which is connected to a low-resolution OGCM for the global ocean (identical to the ocean model used in L) . Thus, in H, as far as the Mediterranean area is concerned, the atmosphere is coupled to an ocean model which resolves mesoscale features (“turbulent” ocean), whereas in L the atmosphere interacts with a more “laminar” oceanic system. Since these two experiments are identical except for the resolution of the ocean model over the Mediterranean Sea , the systematic comparison of H and L will allow the assessment of the net effects on the climate of the Euro-Mediterranean region from explicitly resolving mesoscale oceanic features in the coupled model.
    Description: Unpublished
    Description: Zurich
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: Mediterranean Sea ; eddies ; climate ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: This study investigates the Tropical Cyclone (TC) effect on the northern hemisphere Ocean Heat Transport (OHT) and the possible changes that greenhouse induced global warming might generate in the characteristics of the TC-induced OHT (TCiOHT). The analysis has been performed using 20C3M (20th Century) and A1B (21st Century) IPCC scenario climate simulations obtained running a fully coupled high-resolution global general circulation model named CMCC_MED. The Atmospheric model component has a T159 horizontal resolution and 31 vertical levels. The Ocean model component has a horizontal resolution ranging from 2 degrees to 0.5 degrees near the equator and 31 vertical levels. The capability of the model to reproduce a reasonably realistic TC climatology has been assessed by comparing the model results from the simulation of the 20th Century with observations. TC detection method has been implemented thanks to the TC-MIP project. The model appears to be able to simulate tropical cyclone-like vortices with many features similar to the observed TCs. The simulated TC activity exhibits realistic structure, geographical distribution and interannual variability, suggesting that the model is able to reproduce the major basic mechanisms that link the TC activity with the large scale circulation. The TC-induced ocean cooling is well represented and the resulting column-integrated ocean heating makes the poleward OHT larger in the subtropics and decreases the poleward heat transport out of the deep tropics. This effect, investigated looking at the 100 most intense Northern Hemisphere TCs, is strongly correlated to the TC-induced momentum flux at the surface of the ocean: the winds associated to the TCs significantly weaken the trade winds in the 5-18N latitude belt and reinforce them in the 18-30N band. TCs frequency and intensity appear to be substantially stationary through the whole 1950-2069 period. The effect of the TCs on the OHT is overall less pronounced in the 21st century when compared to the 20th century.
    Description: Unpublished
    Description: Tucson - Arizona
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: Tropical cyclones ; ocean heat transport ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: In this work we present and discuss the results obtained from a set of present and future climate simulations performed with a high-resolution model able to represent the dynamics of the Mediterranean Sea. The ability of the model to reproduce the basic features of the observed climate in the Mediterranean region and the beneficial effects of both atmospheric improved resolution and interactive Mediterranean Sea are assessed. In particular, the major characteristics of the variability in the Mediterranean basin and its connection with the large-scale circulation are investigated. Furthermore, the mechanisms through which global warming might affect the regional features of the climate are explored, focusing especially on the characteristics of the hydrological cycle. The model used is the CMCC-MED model, developed under the framework of the EU CIRCE Project (Climate Change and Impact Research: the Mediterranean Environment), which provides, for the first time, the possibility to accurately assess the role and feedbacks of the Mediterranean Sea in the global climate system. CMCC-MED, in fact, is a global coupled ocean-atmosphere general circulation model (AOGCM) coupled with a high-resolution model of the Mediterranean Sea. The atmospheric model component (ECHAM-5) has a horizontal resolution of about 80 Km, the global ocean model (OPA8.2) has horizontal resolution of about 2◦ with an equatorial refinement (0.5◦) and the Mediterranean Sea model (NEMO in the MFS implementation) has horizontal resolution of 1/16◦ (∼7 Km) and 72 vertical levels. The communication between the atmospheric model and the ocean models is performed through the OASIS3 coupler, and the exchange of SST, surface momentum, heat, and water fluxes occurs approximately every 2 hours. The global ocean-Mediterranean connection occurs through the exchange of dynamical and tracer fields via simple input/output operations. In particular, horizontal velocities, tracers and sea-level are transferred from the global ocean to the Mediterranean model through the open boundaries in the Atlantic box. Similarly, vertical profiles of temperature, salinity and horizontal velocities at Gibraltar Strait are transferred from the regional Mediterranean model to the global ocean. The ocean-to-ocean exchange occurs with a daily frequency, with the exchanged variables being averaged over the daily time-window.
    Description: Unpublished
    Description: Zurich
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: mediterranean region region ; climate change ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: In this work we present and discuss the results obtained from a set of present and future climate simulations performed with a high-resolution model able to represent the dynamics of the Mediterranean Sea. The ability of the model to reproduce the basic features of the observed climate in the Mediterranean region and the beneficial effects of both atmospheric improved resolution and interactive Mediterranean Sea are assessed. In particular, the major characteristics of the variability in the Mediterranean basin and its connection with the large-scale circulation are investigated. Furthermore, the mechanisms through which global warming might affect the regional features of the climate are explored, focusing especially on the characteristics of the hydrological cycle.
    Description: Unpublished
    Description: Wien
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: euro-mediterranean region ; climate variability ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: In this study the interplay between Tropical Cyclones (TCs) and the Northern hemispheric Ocean Heat Transport (OHT) is investigated. In particular, results from a numerical simulation of the 20th and 21st Century climate, following the Intergovernmental Panel for Climate Change (IPCC) 20C3M and A1B scenario protocols respectively have been analyzed. The numerical simulations have been performed using a state-of-the-art global atmosphere-ocean-sea-ice coupled general circulation model - CGCM (CMCC-MED, Gualdi et al. 2010, Scoccimarro et al. 2010) with relatively high-resolution (T159) in the atmosphere. The model is an evolution of the INGV-SXG (Gualdi et al. 2008, Bellucci et al. 2008) and the ECHAM-OPA-LIM (Fogli et al. 2009, Vichi et al. 2010) The simulated TCs exhibit realistic structure, geographical distribution (Fig.2) and interannual variability, indicating that the model is able to capture the basic mechanisms linking the TC activity with the large scale circulation. The cooling of the surface ocean observed in correspondence of the TCs is well simulated by the model (Fig.3). TC activity is shown to significantly affect the poleward OHT out of the tropics, and the heat transport into the deep tropics (Fig.4). This effect, investigated by looking at the 100 most intense Northern Hemisphere TCs, is strongly correlated with the TC-induced momentum flux at the ocean surface (Fig.7). TCs frequency and intensity appear to be substantially stationary through the whole 1950-2069 simulated period as well as the effect of the TCs on the meridional OHT.
    Description: Unpublished
    Description: S.Francisco. USA
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: Tropical cyclones ; Ocean Heat Transoport ; climate models ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: One of the conclusions of the IPCC Fourth Assessment Report is that there are evidences that climate change affects the frequency, intensity, and length of many extreme events, such as floods, droughts, storms and extreme temperatures. At the same time, gradual and non-linear changes in ecosystems and natural resources further increase the consequences of extreme weather events. Climate extreme events are hard to study and even harder to predict because they are, by definition, rare and obey different statistical laws than averages. The availability of climate simulations (historical + sresA1B scenario) covering the period 1970-2100 from a global Coupled General Circulation Model (70 Km of atmospheric spatial resolution) and a Regional Climate Model (14 Km of spatial resolution) give the possibility to investigate three principal weather fields involved in extreme events conditions such as surface temperature, precipitation and wind velocity. For each of them the computation of several indicators has been done, at global and regional scale, on daily time basis over 4 seasons defined as December-February (DJF), March-May (MAM), June-August (JJA), September-November (SON). These indicators characterize each model grid point over the relative spatial model domain (global/regional). For each index we computed trend maps considering only grid points where the detected trend is statistically significant. Available trend maps are defined over five periods of 30 years: 1971-2000 1981-2010, 2011-2040, 2041-2070, 2071-2100, and two periods of 65 years: 1971-2035 and 2036-2100.
    Description: Unpublished
    Description: Alghero, sardinia, Italy
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: extreme events ; general circulation models ; regional circulation model ; precipitation ; temperature ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...